[发明专利]一种基于自监督学习的电力线图像实时分割方法有效

专利信息
申请号: 202110549637.6 申请日: 2021-05-20
公开(公告)号: CN113610858B 公开(公告)日: 2022-03-29
发明(设计)人: 陈梅林;闫云凤;齐冬莲 申请(专利权)人: 浙江大学
主分类号: G06T7/11 分类号: G06T7/11;G06T7/187;G06T7/194;G06N3/04;G06N3/08;G06T5/00;G06T5/50
代理公司: 北京睿智保诚专利代理事务所(普通合伙) 11732 代理人: 周新楣
地址: 310058 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 监督 学习 电力线 图像 实时 分割 方法
【说明书】:

发明公开了一种基于自监督学习的电力线图像实时分割方法。同批次输入电力线样本图像及电力线样本图像掩膜的集合输入到区域生长算法得单条电力线子图像及单条电力线掩膜的集合;随机提取至少一对单条电力线图像对组合,并与随机背景图片结合生成电力线随机背景融合图像和电力线随机背景掩膜的集合;进行随机不重复区域生长得图像修复区域,和图像修复区域形成分割掩膜,经图像修复算法得电力线分割图像,输入到电力线实时分割网络训练,对待测进行预测分割。本发明用较小的感受野以减少模型参数,提高模型运行速度,拼接多个尺度特征图,融合浅层的细节信息和深层的语义信息,以获得更好的分割效果;在较少数据量的情况下精度有较大提升。

技术领域

本发明涉及了一种电力线图像分割的方法,尤其是涉及了一种基于深度学习的电力线图像实时分割方法。

背景技术

随着我国电力行业的快速发展,输配电线路规模变得越来越庞大,电力巡检成为保障输配电线路安全稳定运行的重要一环。目前基于无人机的智能巡检已成为电力行业不可或缺的重要运维手段,已在多处开展常态化作业。

目前的无人机巡检大都由作业人员手动控制完成,由于电力线一般尺寸极小,作业人员仅通过回传图像很难察觉潜在的危险,察觉到了也很难对可能发生的事故做出及时而有效的反应。正因如此,在实际的巡检过程中无人机的机翼很容易和电力线发生碰撞或者缠绕,给无人机的飞行安全和电力设施的稳定运行都带来了极大的风险。为此,电力线分割通过从无人机拍摄的图片中定位出电力线的位置,用以调整无人机的飞行姿态,对实现无人机自动避障、保障无人机低空飞行安全具有重要意义,同时电力线分割也是实现无人机自动跟线巡检的关键技术之一。

但是传统基于线和线段的算法只能在一些简单特定的场景下应用,在复杂场景下极容易出现误检、漏检情况,而基于深度学习的分割模型由于需要大量的有标签数据训练和需要较大的算力而无法部署在实际的无人机嵌入式设备上。

发明内容

为了解决背景技术中的问题,本发明提出了一种基于自监督学习的电力线图像实时分割方法,以解决已有方法中存在的需要大量的有标签数据训练和模型较大需要较大的算力而无法部署在实际的无人机嵌入式设备上的问题。

本发明所采用的技术方案是:

1)区域分离:

将同一个批次的输入电力线样本图像集合Batch及输入电力线样本图像集合Batch对应的电力线样本图像掩膜集合BatchMask输入到区域生长算法,经区域生长算法处理获得每幅输入电力线样本图像中每条电力线所对应的单条电力线子图像及其对应的单条电力线掩膜,由所有输入电力线样本图像的单条电力线子图像构成了电力线子图像集合Batch',由所有输入电力线样本图像的单条电力线子图像的单条电力线掩膜成了单条电力线掩膜集合BatchMask';

2)随机组合:

2.1)电力线子图像集合Batch'中的每一幅电力线子图像与其在单条电力线掩膜集合BatchMask'中对应的单条电力线掩膜构成了一对单条电力线图像对,随机从电力线子图像集合Batch'和单条电力线掩膜集合BatchMask'中取出至少一对单条电力线图像对组合起来,并与一张随机背景图片结合生成电力线随机背景融合图像和电力线随机背景掩膜;

2.2)重复步骤2.1)进行多次,各次随机取出至少一对单条电力线图像对与不同的随机背景图片进行结合,从而获得电力线随机背景融合图像集合Batch”和电力线随机背景掩膜集合BatchMask”;

所述的随机背景图片为与电力线检测场景匹配的但不带有电力线的图片,通常为室外大自然图片。

3)图像修复:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大学,未经浙江大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110549637.6/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top