[发明专利]一种分割图像中异常区域的深度学习算法在审

专利信息
申请号: 202110313181.3 申请日: 2021-03-24
公开(公告)号: CN113034516A 公开(公告)日: 2021-06-25
发明(设计)人: 姚健;朱奕健;余家伟;胡超;顾建峰;陆海妹 申请(专利权)人: 联通(上海)产业互联网有限公司
主分类号: G06T7/11 分类号: G06T7/11;G06K9/62;G06N3/04;G06N3/08
代理公司: 池州市卓燊知识产权代理事务所(普通合伙) 34211 代理人: 李强
地址: 200050 上*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 分割 图像 异常 区域 深度 学习 算法
【权利要求书】:

1.一种分割图像中异常区域的深度学习算法,其特征在于,包括以下步骤:

S1,首先作正样本图像特征提取:使用基于大规模公开数据集(ImageNet)训练的分类网络ViT(视觉transformer)预训练模型,对正样本训练集提取特征,得到的数据体维度表示为(N,C,H,W);

S2,然后对该数据体作统计量计算,对空间位置(i,j)(i的范围为[0,H],j的范围为[0,W])的特征按通道求均值,C_mean(i,j)即对应位置的特征的均值,其是一个长度为C的向量;以及C_corr(i,j),表示对应位置的特征的协方差矩阵,其是一个CxC大小的对称矩阵,需要将这两个统计量保存,为后面测试时计算马氏距离所用;

S3,接下来是测试阶段,同样用ViT提取被测图片的特征表示,然后使用马氏距离作为距离度量,其中,xij表示被测图片在(i,j)空间位置的特征向量,uij和Σij就是在正样本训练数据上统计并保存的(i,j)位置上的特征均值和协方差矩阵,并且通过马氏距离公式计算马氏距离;

S4,最后,例如一张被测图片,其各个空间位置都可计算出与正样本训练集特征的马氏距离,得到一个(H,W)的马氏距离图,通过分割阈值筛选,做到图像块的正常/异常二分类,实现异常区域分割,并且将这个(H,W)的距离图的最大值记作异常值s,以及通过分类阈值筛选,做到全图的正常/异常二分类,即实现异常分类,对于分类和分割阈值的确定,提前人工标注一些真值,通过最大化AUCROC确定阈值或者在完全没有标注信息的情况下,通过正样本验证集,确定分类和分割的阈值。

2.根据权利要求1所述的一种分割图像中异常区域的深度学习算法,其特征在于,所述S1中N表示训练用到的样本数量,C表示特征维度数,H和W分别的特征图的高和宽。

3.根据权利要求1所述的一种分割图像中异常区域的深度学习算法,其特征在于,所述S2中的协方差矩阵计算公式为:

4.根据权利要求1所述的一种分割图像中异常区域的深度学习算法,其特征在于,所述S3中马氏距离公式为:

5.根据权利要求1所述的一种分割图像中异常区域的深度学习算法,其特征在于,所述S1中的特征表示采用非卷积神经网络结构,其感受野来自图片全局,内部采用多头自注意力机制,在大规模图像分类前置任务上训练得到网络权重,无需微调,直接用于当前图片特征提取。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于联通(上海)产业互联网有限公司,未经联通(上海)产业互联网有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110313181.3/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top