[发明专利]一种基于深度图像的剔除噪声的立方物体体积计算方法在审
申请号: | 201910989812.6 | 申请日: | 2019-10-17 |
公开(公告)号: | CN110751688A | 公开(公告)日: | 2020-02-04 |
发明(设计)人: | 任大明;汪辉;银丽娟 | 申请(专利权)人: | 南京鑫和汇通电子科技有限公司 |
主分类号: | G06T7/62 | 分类号: | G06T7/62;G06T7/13;G06T7/10;G01B11/00;G01B11/02 |
代理公司: | 14106 山西华炬律师事务所 | 代理人: | 杨秉一 |
地址: | 210032 江苏省南京市*** | 国省代码: | 江苏;32 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 深度图像 边缘线 三维空间 垂面 角点 边缘点 上表面 梯度图 拟合 剔除 分割图像 轮廓边界 体积计算 坐标获取 长边缘 像素点 噪声点 组集合 检测 共线 聚类 配对 噪声 集合 合并 分类 | ||
1.一种基于深度图像的剔除噪声的立方物体的体积计算方法,其特征在于,包括:
S1、获取立方物体的深度图像,根据深度图像分别获取与其大小相同的X方向和Y方向的梯度图;S2、根据梯度图对其中的像素点分成水平面、左垂面和右垂面三类,获取深度图像的边缘点图;S3、根据分类结果、梯度图和边缘点图获取深度图像中立方物体的上表面、左垂面和右垂面的分割图像;S4、对边缘点图进行边缘线检测,将检测到的所有边缘线进行聚类与合并,获取共线边缘线组集合;S5、根据共线边缘线组集合的每组最长的边缘线提取角点;S6、对提取的角点进行配对;S7、根据获取的四边形和上表面分割图像确定立方物体的上表面和整体轮廓,根据左垂面的分割图像和右垂直分割图像获取每个上表面四边形对应的左右垂面,实现立方物体定位;S8、根据立方物体的上表面、左垂面和右垂面拟合其在三维空间的平面,通过多次重复拟合剔除每个面上的噪声点,获取每个面对应的理想点集合;S9、根据每个面的理想点集合获取每个面的轮廓边界和角点,根据其角点在三维空间中的坐标获取立方物体的长宽高,计算立方物体的体积。
2.根据权利要求1所述的基于深度图像的剔除噪声的立方物体的体积计算方法,其特征在于,根据分类结果、梯度图和边缘点图获取深度图像中立方物体的上表面、左垂面和右垂面的分割图像的具体方式为:
根据分类结果获取与梯度图大小相同的水平面、左垂面和右垂面的二值图,定义与梯度图大小相同的上表面分割图像,设定像素点的初始值为0;
从下到上遍历水平面的二值图中第一列的像素点,根据深度图获取每个像素点的可信度值,给定可信度阈值,若该像素点的可信度值小于给定的可信度阈值,则该像素点的状态为未知,处理下一像素点;否则,若对应的像素点值为255,则该像素点的状态为水平,若对应的像素点为0,则该像素点的状态为垂直,若像素点值为0的像素点的数目大于给定的高度阈值,则将其后出现的像素点值为255的像素点对应在上表面分割图像上并将其像素值更新为255,记录每一次像素点状态发生转变的像素点所在的行数,遍历完第一列所有行的像素点后,将从记录的行数起到第1行的第一列所有像素点对应在上表面分割图像上的位置的像素值置为0,同样的方式遍历完平行面图像的所有行列,获取初始的上表面分割图像,对获取的初始的上表面分割图像进行修补,更新上表面分割图像;
将边缘点图中的边缘点分别一一对应在更新后的上表面分割图像、左垂面的二值图和右垂面的二值图中,将更新后的上表面分割图像中水平状态的非边缘点的像素点值更新为0,将左垂面的二值图中非边缘点的像素值为255的像素点值更新为0,将右垂面的二值图中非边缘点的像素值为255的像素点值更新为0,获取最终的上表面分割图像、左垂面的二值图和右垂面的二值图,将左垂面的二值图和右垂面的二值图分别记作左垂面的分割图像和右垂面的分割图像。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京鑫和汇通电子科技有限公司,未经南京鑫和汇通电子科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910989812.6/1.html,转载请声明来源钻瓜专利网。