[发明专利]一种基于无抽样小波与Gumbel分布的织物缺陷检测方法有效

专利信息
申请号: 201810043774.0 申请日: 2018-01-17
公开(公告)号: CN108399614B 公开(公告)日: 2020-12-22
发明(设计)人: 胡广华;杨烈;黄俊锋;王清辉;李静蓉;徐志佳 申请(专利权)人: 华南理工大学
主分类号: G06T7/00 分类号: G06T7/00;G06T5/30;G06T5/50;G06T3/40;G06T7/136
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 李斌
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 抽样 gumbel 分布 织物 缺陷 检测 方法
【说明书】:

发明公开了一种基于无抽样小波与Gumbel分布的织物缺陷检测方法,包括步骤:对输入图像进行多层无抽样小波分解;根据小波分解所得的近似子图和细节子图,生成融合差分特征图;采用Gumbel模型拟合特征图中的灰度分布,利用MLE算法估计模型参数;将特征图划分成子图块,根据估计的模型参数计算每个子图块的似然估计值,得到似然值分布图;阈值化似然值分布图,得到二值化的检测结果。本发明没有直接将各子带小波系数用作特征,避免了高维特征矢量的计算复杂性;特征融合步骤中考虑了低频信息的影响,避免灰度变化平缓的缺陷被漏检;将小波分析与Gumbel模型结合,把缺陷检测问题转化成假设检验问题,检测精度高。

技术领域

本发明涉及基于机器视觉的织物表面缺陷检测技术领域,特别涉及一种基于无抽样小波分析与Gumbel分布模型的织物表面缺陷在线检测方法。

背景技术

织物表面缺陷可导致相关产品的市场价值降低45%-65%,是影响纺织类产品质量的关键因素之一。长期以来,织物表面缺陷主要通过人工目视方式进行检测。研究表明,人眼只能检测出织物表面疵病的50-70%,精度不超过80%。其它缺点还包括效率低、可靠性差,工作劳动强度大等。因此,采用机器视觉技术进行织物表面缺陷的自动化检测具有重要意义。但和其他检测对象相比,织物由于具有复杂纹理背景,材料有弹性、易牵拉变形,且在线检测要求实时性高等问题,成为视觉检测领域的应用难点及研究热点。

目前织物表面缺陷视觉检测方法主要包括基于滤波的方法和基于特征比较的方法。基于滤波的方法旨在通过滤波操作消除织物背景中的纹理信息,将纹理缺陷检测转化成均匀背景下的缺陷分割问题。但是,由于织物表面纹理存在随机性变动,实际应用中很难取得理想的滤波效果。基于特征的方法通过提取局部图像块的区域特征并与参考特征比较来确定该图像块是否包含缺陷,其中应用最为广泛的是空间灰度共生矩阵(GLCM)、Gabor小波、离散小波变换(DWT)特征等。但是,GLCM和Gabor特征的计算量都很大;而DWT虽然效率高,但现有基于DWT的方法通常直接以各子带小波细节系数为特征,没有考虑近似系数所包含的低频信息,因此对灰度变化平缓、边缘特征不明显的缺陷(如油污)检测效果不佳。

另一方面,现有方法基本属于有监督或半-监督检测方法。其中,前者需要大量的缺陷样本用于系统参数训练和学习。但在实际应用中,由于现代生产设备性能的提高以及缺陷出现的不可预期性,要想获取足够多的典型缺陷样本非常困难。其次,基于有监督方法的检测系统通常泛化能力差,对没有包含在训练样本库中的“新”缺陷经常无能为力。另一方面,基于半-监督方法的系统虽然不需要事先采集缺陷样本,但仍需若干无缺陷样本用作“标准”模板图像。检测时,待测图像的特征与“标准”模板特征进行对比,从而判断缺陷是否存在并对其定位。然而,实际的生产环境中,光照变化、导辊张紧力的波动、材料固有的弹性形变,以及其他随机性干扰,容易致使系统状态出现漂移,造成待测图像与“标准”模板图像之间产生较大的配准偏差,如二者的相对偏转角、位置偏移、伸缩变形量、分辨率、图像灰度等方面的差异等。这些偏差将造成系统检测精度严重下降甚至检测失效,需要停机以重新进行参数调整和标定。

发明内容

本发明的目的在于克服现有技术的缺点与不足,提供一种基于无抽样小波与Gumbel分布的织物缺陷检测方法,具有检测速度快、精度高,检测结果稳定,适应性好的优点。

本发明的目的通过以下的技术方案实现:一种基于无抽样小波与Gumbel分布的织物缺陷检测方法,包括:

步骤1、对输入的待测图像进行多层无抽样小波分解,每个分解层生成近似子图和水平、垂直、对角三个方向的细节子图各一幅。

步骤2、根据小波分解所得的近似子图和细节子图,计算小波子带的差分特征,以此弱化纹理背景、突出缺陷信号。具体步骤为:

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810043774.0/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top