[发明专利]一种基于特征点在线动态标定的单目视觉车辆定位方法有效
申请号: | 201711384246.3 | 申请日: | 2017-12-20 |
公开(公告)号: | CN108106627B | 公开(公告)日: | 2019-08-09 |
发明(设计)人: | 杨殿阁;曹重;江昆;王思佳;肖中阳;谢诗超;柳超然 | 申请(专利权)人: | 清华大学 |
主分类号: | G01C21/34 | 分类号: | G01C21/34 |
代理公司: | 北京纪凯知识产权代理有限公司 11245 | 代理人: | 徐宁;孙楠 |
地址: | 100084 北京市海淀区1*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 特征点 前车 标定 车辆定位 在线动态标定 单目视觉 坡道 相机 标定信息 车辆特征 车辆位置 初步估计 颠簸路面 复杂路况 高适应性 空间关系 空间模型 空间位置 连续采集 特征属性 图像序列 点匹配 帧图像 后车 平直 颠簸 分析 图像 记录 发现 | ||
1.一种基于特征点在线动态标定的单目视觉车辆定位方法,其特征在于包括以下步骤:
1)搭载相机的车辆为后车,后车在行驶过程中,在相机的图像中发现欲定位的车辆,该车辆即为前车;为定位前车,连续采集前车图像序列,建立空间模型及坐标系;
2)在平直道路上,首先对每一帧图像进行分析,识别前车特征点并记录其特征属性,同时初步估计这些特征点在空间中的位置;
所述步骤2)中,具体过程包括以下步骤:
2.1)针对每一帧图像,采用深度学习方法获取前车的外接矩形框;
2.2)采用图像特征点提取方法,对图像中前车外接矩形框内的所有特征点进行提取,并记录其特征点属性,第i个特征点在二维直角坐标系Oi-UV中的位置表示为
2.3)建立空间位置关系,通过标定的车辆高度hc,相机焦距f,光轴在图像上的投影(u0,v0),外界矩形下边缘在二维直角坐标系Oi-UV中V方向的位置v2,计算相机与前车的距离d:
2.4)通过标定的车辆高度hc,相机焦距f,光轴在图像上的投影(u0,v0),与计算出的距离d,初步估计各特征点在空间坐标系O-X0Y0Z0中的位置如下:
3)根据连续多个时刻获取的车辆特征点匹配与分析,获得其中用于标定的特征点库;
4)获得标定特征点库后,需要获得其中每个特征点的标定后空间位置;
5)完成特征点标定后,将标定信息用于颠簸道路与坡道的前车定位,建立空间关系,完成在颠簸路面与坡道上的车辆定位。
2.如权利要求1所述的方法,其特征在于:所述步骤1)中,空间模型及坐标系建立过程步骤如下:
1.1)建立空间坐标系O-X0Y0Z0:坐标系固定在前车上,跟随前车运动,坐标系原点位于前车尾部两个轮胎与地面接触的中心点连线的中点,X轴方向沿车辆后轮速度方向,以米为单位;
1.2)建立二维直角坐标系Oi-UV和三维直角坐标系O'-X'Y'Z',二维直角坐标系以图像左上角为原点,向右为U轴正方向,向下为V轴正方向,三维直角坐标系以相机镜头中心为原点,二者均以像素为单位;
1.3)由于相机与后车固连,通过求解相机在空间坐标系O-X0Y0Z0中的位置,以及相机与后车的相对位置关系,定位后车位置,据此得到前后两车的相对位置关系,即完成前车定位。
3.如权利要求1所述的方法,其特征在于:所述步骤3)中,具体过程包括以下步骤:
3.1)根据各图像中的特征点属性,使用SIFT中特征点匹配算法,将各图像中特征点进行匹配,得到任意特征点以及与其匹配的特征点的集合;
3.2)建立特征点库;
3.3)建立特征点库中每个点在不同时刻的空间位置序列;
3.4)定义计算特征点空间分布相似度的函数其中与为特征点库中第i和第j个特征点的空间分布;
3.5)将特征点库根据空间分布的相似性进行分类,空间分布具有相似关系的所有特征点为一类,在这些类中,选出具有特征点最多的那一类,则该类即为标定特征点库。
4.如权利要求3所述的方法,其特征在于:所述步骤3.2)中,该特征点库具备如下特征:
a)库中的特征点之间无法匹配;
b)图像序列中的每个特征点均能找到特征点库中的点与之匹配;
c)库中每个特征点均能找到至少两张图像存在与之匹配的特征点。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201711384246.3/1.html,转载请声明来源钻瓜专利网。