[发明专利]一种基于深度学习的带钢头部厚度预报方法有效
申请号: | 202110446301.7 | 申请日: | 2021-04-25 |
公开(公告)号: | CN113134514B | 公开(公告)日: | 2022-02-01 |
发明(设计)人: | 孙杰;于加学;袁尚斌;李树;彭文;丁敬国;张殿华 | 申请(专利权)人: | 东北大学 |
主分类号: | B21B37/16 | 分类号: | B21B37/16 |
代理公司: | 沈阳东大知识产权代理有限公司 21109 | 代理人: | 李珉 |
地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供一种基于深度学习的带钢头部厚度预报方法,涉及轧钢自动控制技术领域。本发明通过分析轧钢过程中影响头部厚度的因素,确定了轧制力、辊缝、轧制温度、板坯厚度和轧制速度因素为预报器的输入参数;利用深度神经网络结构,并提取轧钢生产数据,得到的汇总数据满足后续数据分析和神经网络使用的需求。使用TensorFlow深度学习框架实现了预报器的功能,预报器准确率满足要求,对不同厚度的带钢头部厚度命中率有明显提升,分析神经网络各参数对性能的影响;并且提出了一种优化本预报器的方法,较默认配置预报器准确率有明显提升。使用训练集对神经网络进行训练,最后用测试集评估训练后的模型效果,大大提高了带钢成材率。 | ||
搜索关键词: | 一种 基于 深度 学习 带钢 头部 厚度 预报 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学,未经东北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110446301.7/,转载请声明来源钻瓜专利网。