[发明专利]一种深度卷积神经网单目标跟踪方法、设备及存储设备在审
申请号: | 201710814400.X | 申请日: | 2017-09-11 |
公开(公告)号: | CN107633529A | 公开(公告)日: | 2018-01-26 |
发明(设计)人: | 陈分雄;陶然;陈沁仪;黄华文;刘建林;尹关;唐曜曜;凌承昆;王典洪 | 申请(专利权)人: | 中国地质大学(武汉) |
主分类号: | G06T7/246 | 分类号: | G06T7/246;G06T7/254;G06T7/269 |
代理公司: | 武汉知产时代知识产权代理有限公司42238 | 代理人: | 付春霞 |
地址: | 430074 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种深度卷积神经网单目标跟踪方法、设备及存储设备,所述方法包括步骤对深度卷积神经网络进行预训练;训练后得到深度卷积神经网络模型参数;根据模型参数得到训练后的深度卷积神经网络;初始化训练后的深度卷积神经网络模型的末端网络层以突出跟踪目标特征;获取训练后并初始化后的深度卷积神经网络模型;通过高斯分布融合光流特征点来简化跟踪目标;将简化的跟踪目标输入训练后并初始化后的深度卷积神经网络模型得到输出结果;训练回归模型用于修正所述输出结果得到修正结果;使用修正结果更新深度卷积神经网络模型参数,得到最新的深度卷积神经网络模型。本发明在保证跟踪精度优势的情况下获得实用的算法处理速度。 | ||
搜索关键词: | 一种 深度 卷积 神经 目标 跟踪 方法 设备 存储 | ||
【主权项】:
一种深度卷积神经网单目标跟踪方法,所述方法由一种深度卷积神经网单目标跟踪设备实现,其特征在于:包括以下步骤:对深度卷积神经网络进行预训练;训练后得到深度卷积神经网络模型参数;根据模型参数得到训练后的深度卷积神经网络;初始化训练后的深度卷积神经网络模型的末端网络层以突出跟踪目标特征;获取训练后并初始化后的深度卷积神经网络模型;通过高斯分布融合光流特征点来简化跟踪目标;将简化的跟踪目标输入训练后并初始化后的深度卷积神经网络模型得到输出结果;训练回归模型用于修正所述输出结果得到修正结果;使用修正结果更新深度卷积神经网络模型参数,得到最新的深度卷积神经网络模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国地质大学(武汉),未经中国地质大学(武汉)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710814400.X/,转载请声明来源钻瓜专利网。
- 上一篇:一种刚体识别方法及系统
- 下一篇:一种基于视频图像序列的目标运动轨迹提取技术