[发明专利]一种基于深度学习的结直肠息肉图像分割方法在审

专利信息
申请号: 202210550464.4 申请日: 2022-05-18
公开(公告)号: CN114972364A 公开(公告)日: 2022-08-30
发明(设计)人: 马立栋;颜成钢;高宇涵;孙垚棋;张继勇;李宗鹏 申请(专利权)人: 杭州电子科技大学
主分类号: G06T7/10 分类号: G06T7/10;G06N3/04;G06N3/08;G06T5/00;G06T5/50;G06T7/00
代理公司: 杭州君度专利代理事务所(特殊普通合伙) 33240 代理人: 朱月芬
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 直肠 息肉 图像 分割 方法
【说明书】:

发明公开了一种基于深度学习的结直肠息肉图像分割方法。首先获取结直肠息肉分割数据集;进行数据预处理;再构建基于深度学习的结直肠息肉图像分割模型;通过训练集对构建好的基于深度学习的结直肠息肉图像分割模型训练,对每一级预测结果使用结构损失函数进行监督学习,并且将最后一级的预测结果作为最终的预测结果;本发明基于深度学习来构建结直肠息肉图像分割模型,对结直肠息肉分割图像的特征进行精确提取并且细节保留完整,利用显著性目标检测中效果较好的结构损失函数对结果进行监督学习,使得预测结果更加准确,具有较强的鲁棒性,从而实现对结直肠息肉图像的精确分割。

技术领域

本发明涉及计算机视觉以及深度学习领域,具体而言是一种基于深度学习的结直肠息肉图像分割方法。

技术背景

结直肠癌是全世界最常见的一种癌症。多项研究表明,早期结肠镜检查可以使结直肠癌的发病率下降30%。因此,通过结直肠镜来筛查和切除癌前病变来预防直肠癌至关重要。医生可以通过结肠镜检查所提供的结直肠息肉的位置和外观信息来对其在发展为结直肠癌之前切除,这是一种有效的结直肠癌筛查和预防技术。因此,在临床上,对息肉的精确定位和分割技术的研究是有实际应用价值的,这可以辅助内窥镜医生检测息肉,从而提高准确率。然而,对于这项技术充满了挑战性,主要有两方面的原因:一方面,息肉的外观通常不同,即使它们是同一类型,也会存在大小,颜色和质地等差别,这大大增加了息肉分割的难度;另一方面,在结肠镜图像中,息肉与其周围黏膜之间的边界通常是模糊的,并且缺乏分割方法所需的强烈对比度,这导致息肉变成了一个较难定位分割的伪装对象。

因此,一种能够在早期发现所有潜在息肉的自动而准确的息肉图像分割方法对预防结直肠癌具有重要意义。

发明内容

本发明提出一种基于深度学习的结直肠息肉图像分割方法。该方法可以准确快速的对息肉进行分割,解决息肉具有不同的大小、颜色和质地以及和周围组织黏膜高度相似所造成的分割精度不高的问题。

本发明的技术方案是这样实现的:

一种基于深度学习的结直肠息肉图像分割方法,包括以下步骤:

步骤(1)、获取结直肠息肉分割数据集。

结直肠息肉分割数据集采用现有的CVC-ClinicDB数据集。该数据集被随机分成训练集和测试集,其中80%作为训练集用于对所提出的模型进行训练,20%作为测试集用于对所提出的模型的鲁棒性进行评判。

步骤(2)、数据预处理;

将结直肠息肉分割图像通过双线性插值算法裁剪为352×352尺寸;

步骤(3)、构建基于深度学习的结直肠息肉图像分割模型。

所述的基于深度学习的结直肠息肉图像分割模型包括一个ResNet50特征提取模块,三个CBR模块,搜索定位模块以及三个识别细化边界模块RRM。首先,输入图像通过ResNet50特征提取模块获得5个由浅层到深层的特征X1、X2、X3、X4和X5;接着将X1、X2和X3通过CBR模块进行特征增强;然后,使用搜索定位模块融合三个深层的特征X1、X2、X3,从而得到粗略的预测结果P1;最后,使用识别细化边界模块通过级联的方式得到精确的预测结果P2,P3,P4。

步骤(4)、通过训练集对构建好的基于深度学习的结直肠息肉图像分割模型训练,对每一级预测结果使用结构损失函数进行监督学习,并且将最后一级的预测结果作为最终的预测结果。

步骤(5)、对模型训练结果加以验证,将测试集的数据输入到训练好的模型中,然后获取预测结果,与真实结果对比验证是否有效。预测结果和真实结果都是只有0和1的二值化图像,通过相减的方式获取一张图不同的像素点,然后除以整张图总像素数就是MAE指标,该指标越小越好。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202210550464.4/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top