[发明专利]一种高精度地图要素的提取方法及装置有效
申请号: | 202011087090.4 | 申请日: | 2020-10-12 |
公开(公告)号: | CN112258568B | 公开(公告)日: | 2022-07-01 |
发明(设计)人: | 何豪杰;肖圣;熊迹;罗跃军 | 申请(专利权)人: | 武汉中海庭数据技术有限公司 |
主分类号: | G06T7/593 | 分类号: | G06T7/593;G06K9/62;G06T5/00;H04N13/271;G06V10/74;G06V10/80;G06V10/30 |
代理公司: | 武汉蓝宝石专利代理事务所(特殊普通合伙) 42242 | 代理人: | 王振宇 |
地址: | 430000 湖北省武汉市*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 高精度 地图 要素 提取 方法 装置 | ||
本发明涉及一种高精度地图要素的提取方法及装置,其方法包括:获取一一对应的双目图像与激光点云;对所述双目图像进行匹配和深度估计,得到双目图像对应的深度图;根据双目图像及其对应的深度图和激光点云,获取所述双目图像的图像特征以及对应的激光点云三维特征;根据所述激光点云三维特征确定激光点云中独立要素的3D包围框信息;根据所述3D包围框和其框内的激光点云信息提取独立要素。本发明融合了基于深度学习的激光点云与双目的要素提取方法,通过多尺度特征融合提高提取的精度,通过过滤非要素点云降低计算复杂度,提高提取速度。
技术领域
本发明涉及高精度地图制作领域,尤其涉及一种基于双目估计与点云的高精度地图提取方法及装置。
背景技术
在高精度地图要素提取中,基于半自动要素制作方法耗时长、人工交互多且效率低下。传统的纯激光点云方法提取可提供的信息较少且计算复杂度高。
发明内容
本发明针对传统利用激光点云制作高精度地图的方法人工成本高、计算复杂度高、准确率低的问题,在本发明的第一方面提供了一种高精度地图要素的提取方法,包括如下步骤:获取一一对应的双目图像与激光点云;对所述双目图像进行匹配和深度估计,得到双目图像对应的深度图;根据双目图像及其对应的深度图和激光点云,获取所述双目图像的图像特征以及对应的激光点云三维特征;根据所述激光点云三维特征确定激光点云中独立要素的3D包围框信息;根据所述3D包围框和其框内的激光点云信息提取独立要素。
在本发明的一些实施例中,所述对所述双目图像进行匹配和深度估计,得到双目图像对应的深度图包括如下步骤:提取双目图像的图像特征,将所述图像特征将其划分为左特征图、右特征图;根据左特征图与其对应的右特征图的相关性,计算并存储对应的匹配代价值;根据所述匹配代价值对所述双目图像在视差维度和空间维度聚合特征上进行全局优化;计算并优化所述双目图像的视差,得到所述双目图像的深度估计。
在本发明的一些实施例中,所述根据双目图像及其对应的深度图和激光点云,获取所述双目图像的图像特征以及对应的激光点云三维特征包括如下步骤:根据所述深度图确定所述激光点云的三维特征的重要程度并对其进行筛选;将双目图像的图像特征与激光点云的三维特征串联并进行多尺度的特征金字塔融合,构建骨架网络特征层。
在本发明的一些实施例中,所述根据所述激光点云三维特征确定激光点云中独立要素的3D包围框信息包括如下步骤:通过二阶段提取方法自底而上地生成第一3D提案;将3D点云转换为规范坐标;利用语义特征、局部空间特征和所述规范坐标对3D提案进行优化,得到第二3D提案;根据所述第二3D提案获得高精度地图激光点云中独立要素的3D包围框信息。
在本发明的一些实施例中,所述根据所述3D包围框和其框内的激光点云信息提取独立要素包括如下步骤:对同一路段的激光点云中的重复提取的要素进行去重操作;依据非极大值抑制方法对所述3D包围框进行去重;对提取的错误目标要素或者非完整目标要素进行过滤;根据点云的物理属性和空间尺度对3D包围框内的点云进行边缘、特征点提取。
进一步的,所述点云的物理属性包括几何域、强度域。
在本发明的第二方面,提供了一种高精度地图要素的提取装置,其特征在于,包括第一获取模块、估计模块、第二获取模块、确定模块、第一提取模块,所述第一获取模块,用于获取一一对应的双目图像与激光点云;所述估计模块,用于对所述双目图像进行匹配和深度估计,得到双目图像对应的深度图;所述第二获取模块,根据双目图像及其对应的深度图和激光点云,获取所述双目图像的图像特征以及对应的激光点云三维特征;所述确定模块,根据所述激光点云三维特征确定激光点云中独立要素的3D包围框信息;所述第一提取模块,根据所述3D包围框和其框内的激光点云信息提取独立要素。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉中海庭数据技术有限公司,未经武汉中海庭数据技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202011087090.4/2.html,转载请声明来源钻瓜专利网。