[发明专利]基于深度卷积神经网络与视觉显著性的织物缺陷检测方法有效

专利信息
申请号: 201711212830.0 申请日: 2017-11-28
公开(公告)号: CN107833220B 公开(公告)日: 2021-06-11
发明(设计)人: 李庆武;邢俊;马云鹏;周亚琴;吴晨辉 申请(专利权)人: 河海大学常州校区
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04;G06T7/11;G06T7/155
代理公司: 南京纵横知识产权代理有限公司 32224 代理人: 董建林;许婉静
地址: 213022 江苏*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 基于 深度 卷积 神经网络 视觉 显著 织物 缺陷 检测 方法
【权利要求书】:

1.一种基于深度卷积神经网络与视觉显著性的织物缺陷检测方法,其特征在于,包括以下步骤:

(1)选取织物缺陷训练数据集,对数据集中的图像进行灰度化处理,然后进行尺寸归一化处理;

(2)将经过步骤(1)预处理后的织物缺陷训练数据集输入至缺陷区域定位模块,所述缺陷区域定位模块利用全局神经网络模型与局部神经网络模型分别对织物数据集进行训练,提取织物缺陷的全局与局部高级特征,获得一个误差最低的模型;

(3)将待测试图像进行灰度化及归一化处理,然后分别输入至全局神经网络模型与局部神经网络模型;全局神经网络模型负责对待测试图像中的每个像素点进行预测,输出每个像素点属于缺陷区域的概率向量;局部神经网络模型对待测试图像进行缺陷区域的初始定位,获得缺陷区域的边界框,所述边界框是缺陷候选区域;

(4)利用全局神经网络模型对每个像素点的预测结果以及局部神经网络模型输出的缺陷区域的边界框,通过构建的多模型融合方法,获得联合全局神经网络模型、局部神经网络模型两个模型的缺陷区域得分,根据所述得分对缺陷区域进行剔除;

(5)利用SLIC超像素分割算法将缺陷子图像区域分割成若干个不同的超像素区域,把每一个超像素区域看作一个节点,然后利用超像素节点间的区域对比度、空间位置关系、先验局部heatmap信息构建超像素节点的显著函数,并且根据显著函数计算输入图像的先验显著图;

(6)利用自适应阈值分割算法对先验显著图进行分割,然后基于形态学开闭运算对分割后图像进行后处理,去除图像空洞及散点,最终检测出织物图像中的缺陷。

2.根据权利要求1所述的基于深度卷积神经网络与视觉显著性的织物缺陷检测方法,其特征在于:步骤(1)中,利用RGB与YUV颜色空间的变化关系建立亮度Y与R、G、B三个颜色分量的关系,即Y=0.11B+0.59G+0.3R,对织物缺陷图像数据集进行灰度化,并利用双立方插值法将训练图像归一化至设定像素大小。

3.根据权利要求1所述的基于深度卷积神经网络与视觉显著性的织物缺陷检测方法,其特征在于:步骤(2)中,训练全局神经网络模型时,训练全局神经网络的输入为织物缺陷图像数据集和织物缺陷标注索引图,利用卷积操作提取织物图像的全局特征,全局神经网络模型参数为:

第一层为图像输入层,图像输入层大小与训练图片大小一致;

中间有l层隐层,由卷积层与池化层交替连接构成;

最后是若干反卷积层,由于卷积层导致10×10ppi~200×200ppi分辨率大小的特征图恢复至原图大小,输出图像中每个像素点属于缺陷点的概率,得到一张heatmap图。

4.根据权利要求1所述的基于深度卷积神经网络与视觉显著性的织物缺陷检测方法,其特征在于:步骤(2)中,训练局部神经网络模型时,局部神经网络的输入为织物缺陷数据集及织物缺陷在图像中的坐标,利用卷积操作提取织物图像的局部特征,其中卷积核大小与全局神经网络模型中的卷积核大小一致,局部神经网络的模型参数为:

第一层为训练图像输入层,图像输入层的大小被归一化成设定大小;中间有k层隐层,由卷积层与池化层交替连接构成;最后是全连接层,输出缺陷位置与类别信息。

5.根据权利要求1所述的基于深度卷积神经网络与视觉显著性的织物缺陷检测方法,其特征在于:步骤(2)中,利用n张织物缺陷图像分别对全局神经网络与局部神经网络模型进行训练,全局神经网络与局部神经网络模型分别训练k1次和k2次后,模型误差收敛,此时获得最优模型权重。

6.根据权利要求1所述的基于深度卷积神经网络与视觉显著性的织物缺陷检测方法,其特征在于:步骤(3)中,利用训练好的最优模型权重设置网络模型,将测试织物图像分别输入至全局神经网络模型与局部神经网络模型中,分别输出heatmap图及缺陷的位置信息。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于河海大学常州校区,未经河海大学常州校区许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201711212830.0/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top