[发明专利]一种双多晶应变SiGe SOI BiCMOS集成器件及制备方法有效
申请号: | 201210244311.3 | 申请日: | 2012-07-16 |
公开(公告)号: | CN102723338A | 公开(公告)日: | 2012-10-10 |
发明(设计)人: | 张鹤鸣;周春宇;宋建军;宣荣喜;胡辉勇;舒斌;戴显英;郝跃 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | H01L27/12 | 分类号: | H01L27/12;H01L21/84 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 710065 陕*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 多晶 应变 sige soi bicmos 集成 器件 制备 方法 | ||
1.一种双多晶应变SiGe SOI BiCMOS集成器件,其特征在于,NMOS器件为应变SiGe平面沟道,PMOS器件为应变SiGe平面沟道,双极器件基区为SiGe材料。
2.根据权利要求1所述的双多晶应变SiGe SOI BiCMOS集成器件,其特征在于,PMOS器件导电沟道为应变SiGe材料,沿沟道方向为压应变。
3.根据权利要求1所述的双多晶应变SiGe SOI BiCMOS集成器件,其特征在于,PMOS器件采用量子阱结构。
4.根据权利要求1所述的双多晶应变SiGe SOI BiCMOS集成器件,其特征在于,器件衬底为SOI材料。
5.根据权利要求1所述的双多晶应变SiGe SOI BiCMOS集成器件,其特征在于,SiGe HBT器件的发射极和基极采用多晶硅接触。
6.根据权利要求1所述的双多晶应变SiGe SOI BiCMOS集成器件,其特征在于,其制备过程采用自对准工艺,并为平面结构。
7.双多晶应变SiGe SOI BiCMOS集成器件的制备方法,其特征在于,包括如下步骤:
第一步、选取氧化层厚度为150~400nm,上层Si厚度为100~150nm,N型掺杂浓度为1×1016~1×1017cm-3的SOI衬底片;
第二步、利用化学汽相淀积(CVD)的方法,在600~750℃,在衬底上生长一层厚度为50~100nm的N型Si外延层,作为集电区,该层掺杂浓度为1×1016~1×1017cm-3;
第三步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2,光刻隔离区,利用干法刻蚀工艺,在隔离区刻蚀出深度为2.5~3.5μm的深槽,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2和一层SiN,将深槽内表面全部覆盖,最后淀积SiO2将深槽内填满,形成深槽隔离;
第四步、利用化学汽相淀积(CVD)的方法,在600~800℃,在外延Si层表面淀积一层厚度为500~700nm的SiO2层,光刻集电极接触区窗口,对衬底进行磷注入,使集电极接触区掺杂浓度为1×1019~1×1020cm-3,形成集电极接触区域,再将衬底在950~1100℃温度下,退火15~120s,进行杂质激活;
第五步、刻蚀掉衬底表面的氧化层,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积二层材料:第一层为SiO2层,厚度为20~40nm;第二层为P型Poly-Si层,厚度为200~400nm,掺杂浓度为1×1020~1×1021cm-3;
第六步、光刻Poly-Si,形成外基区,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积SiO2层,厚度为200~400nm,利用化学机械抛光(CMP)的方法去除Poly-Si表面的SiO2;
第七步、利用化学汽相淀积(CVD)方法,在600~800℃,淀积一SiN层,厚度为50~100nm,光刻发射区窗口,刻蚀掉发射区窗口内的SiN层和Poly-Si层;再利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一SiN层,厚度为10~20nm,干法刻蚀掉发射窗SiN,形成侧墙;
第八步、利用湿法刻蚀,对窗口内SiO2层进行过腐蚀,形成基区区域,利用化学汽相淀积(CVD)方法,在600~750℃,在基区区域选择性生长SiGe基区,Ge组分为15~25%,掺杂浓度为5×1018~5×1019cm-3,厚度为20~60nm;
第九步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积Poly-Si,厚度为200~400nm,再对衬底进行磷注入,并利用化学机械抛光(CMP)去除发射极接触孔区域以外表面的Poly-Si,形成发射极;
第十步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积SiO2层,在950~1100℃温度下,退火15~120s,进行杂质激活;
第十一步、光刻MOS有源区,利用干法刻蚀工艺,在MOS有源区刻蚀出深度为100~140nm的浅槽,利用化学汽相淀积(CVD)方法,在600~750℃,在该浅槽中连续生长三层材料:第一层是厚度为80~120nm的N型Si缓冲层,该层掺杂浓度为5~5×1015cm-3;第二层是厚度为10~15nm的N型SiGe外延层,该层Ge组分为15~30%,掺杂浓度为1~5×1016cm-3;第三层是厚度为3~5nm的本征弛豫型Si帽层;
第十二步、利用化学汽相淀积(CVD)方法,在600~800℃,在外延材料表面淀积一层厚度为300~500nm的SiO2层;光刻PMOS器件有源区,对PMOS器件有源区进行N型离子注入,使其掺杂浓度达到1~5×1017cm-3;光刻NMOS器件有源区,利用离子注入工艺对NMOS器件区域进行P型离子注入,形成NMOS器件有源区P阱,P阱掺杂浓度为1~5×1017cm-3;
第十三步、利用湿法刻蚀,刻蚀掉表面的SiO2层,利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层厚度为3~5nm的SiN层作为栅介质和一层厚度为300~500nm的本征Poly-Si层,光刻Poly-Si栅和栅介质,形成22~350nm长的伪栅;
第十四步、利用离子注入,分别对NMOS器件有源区和PMOS器件有源区进行N型和P型离子注入,形成N型轻掺杂源漏结构(N-LDD)和P型轻掺杂源漏结构(P-LDD),掺杂浓度均为1~5×1018cm-3;
第十五步、利用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层厚度为5~15nm的SiO2层,利用干法刻蚀工艺,刻蚀掉表面的SiO2层,保留Poly-Si栅和栅介质侧面的SiO2,形成侧墙;
第十六步、光刻出PMOS器件有源区,利用离子注入技术自对准形成PMOS器件的源漏区;光刻出NMOS器件有源区,利用离子注入技术自对准形成NMOS器件的源漏区;将衬底在950~1100℃温度下,退火15~120s,进行杂质激活;
第十七步、用化学汽相淀积(CVD)方法,在600~800℃,在衬底表面淀积一层SiO2,厚度为300~500nm,利用化学机械抛光(CMP)技术,将SiO2平坦化到栅极表面;
第十八步、利用湿法刻蚀将伪栅极完全去除,留下氧化层上的栅堆叠的自对准压印,在衬底表面生长一层厚度为2~5nm的氧化镧(La2O3);在衬底表面溅射一层金属钨(W),最后利用化学机械抛光(CMP)技术将栅极区域以外的金属钨(W)及氧化镧(La2O3)除去;
第十九步、利用化学汽相淀积(CVD)方法,在600~800℃,表面生长一层SiO2层,并光刻引线孔;
第二十步、金属化、光刻引线,形成MOS器件的漏极、源极和栅极以及SiGe HBT的发射极、基极、集电极金属引线,构成导电沟道为22~350nm的双多晶、应变SiGe SOI BiCMOS集成器件。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201210244311.3/1.html,转载请声明来源钻瓜专利网。
- 上一篇:井下人员定位的方法
- 下一篇:激光传导装置及激光器自动保护设备
- 同类专利
- 专利分类
H01L 半导体器件;其他类目中不包括的电固体器件
H01L27-00 由在一个共用衬底内或其上形成的多个半导体或其他固态组件组成的器件
H01L27-01 .只包括有在一公共绝缘衬底上形成的无源薄膜或厚膜元件的器件
H01L27-02 .包括有专门适用于整流、振荡、放大或切换的半导体组件并且至少有一个电位跃变势垒或者表面势垒的;包括至少有一个跃变势垒或者表面势垒的无源集成电路单元的
H01L27-14 . 包括有对红外辐射、光、较短波长的电磁辐射或者微粒子辐射并且专门适用于把这样的辐射能转换为电能的,或适用于通过这样的辐射控制电能的半导体组件的
H01L27-15 .包括专门适用于光发射并且包括至少有一个电位跃变势垒或者表面势垒的半导体组件
H01L27-16 .包括含有或不含有不同材料结点的热电元件的;包括有热磁组件的