[发明专利]一种基于深度学习的卫星定量降水估计方法在审
申请号: | 202211486452.6 | 申请日: | 2022-11-24 |
公开(公告)号: | CN115859797A | 公开(公告)日: | 2023-03-28 |
发明(设计)人: | 高峰;刘波;成巍;刘厂;李亚云;卞双双;孙静哲;王凯 | 申请(专利权)人: | 哈尔滨工程大学 |
主分类号: | G06F30/27 | 分类号: | G06F30/27;G06F119/02 |
代理公司: | 北京代代志同知识产权代理事务所(普通合伙) 16004 | 代理人: | 冀学军 |
地址: | 150001 黑龙江*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明了一种基于深度学习的卫星定量降水估计方法,属于气象卫星的技术领域。首先收集降水量待估计区域的历史卫星观测数据和使用GPM‑IMERG逐半小时测量的历史区域降水数据,构建训练数据集。然后构建深度学习网络模型,并使用训练数据集对深度学习网络模型进行训练,得到卫星定量降水估计模型。最后将某一时刻的新的卫星观测数据进行处理后得到一份区域数据,并将此区域数据作为卫星定量降水估计模型的输入数据,经过卫星定量降水估计模型输出区域定量降水估计结果,并将该结果可视化为一张降雨强度分布图。本发明利用深度学习的非线性映射能力,提高了降水估计的准确性。 | ||
搜索关键词: | 一种 基于 深度 学习 卫星 定量 降水 估计 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工程大学,未经哈尔滨工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202211486452.6/,转载请声明来源钻瓜专利网。