[发明专利]基于Swin Transformer的无人机目标跟踪方法在审
申请号: | 202210913007.7 | 申请日: | 2022-07-31 |
公开(公告)号: | CN115147459A | 公开(公告)日: | 2022-10-04 |
发明(设计)人: | 张瑞麟;何勇军;王健;丁博 | 申请(专利权)人: | 哈尔滨理工大学 |
主分类号: | G06T7/246 | 分类号: | G06T7/246;G06V20/40;G06V10/82;G06N3/04;G06N3/08 |
代理公司: | 暂无信息 | 代理人: | 暂无信息 |
地址: | 150080 黑龙江省哈*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于Swin Transformer的无人机跟踪目标方法,本发明涉及无人机自动驾驶过程中,现有的目标追踪算法对目标追踪效果不好的问题。传统的目标追踪算法存在着目标丢失再检测无法算作同一单位,目标遮挡无法识别,数据整体时序性能利用不强等问题;为解决上述问题,本发明提出了基于Swin Transformer的无人机目标追方法;该方法将语音领域的算法应用到目标追踪算法上,首先利用Swin Transformer将数据进行特征的提取,将图像特征进行两两拼接,之后使用改进的Transformer进行目标追踪算法特征的增强,之后在自注意力模块中输入上述两两拼接的特征,增强帧与帧之间的特征学习;经过充分的实验验证得知,该方法在无人机目标追踪上取得了很好的效果。本发明应用于无人机自动驾驶的目标追踪领域。 | ||
搜索关键词: | 基于 swin transformer 无人机 目标 跟踪 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨理工大学,未经哈尔滨理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210913007.7/,转载请声明来源钻瓜专利网。
- 上一篇:一种具有防护结构的配电柜
- 下一篇:一种市政智能排水装置及其排水方法
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法