[发明专利]一种基于深度强化学习的机械臂六自由度实时抓取方法有效
申请号: | 202110972705.X | 申请日: | 2021-08-24 |
公开(公告)号: | CN113752255B | 公开(公告)日: | 2022-12-09 |
发明(设计)人: | 禹鑫燚;徐靖;黄睿;邹超;欧林林;陈磊 | 申请(专利权)人: | 浙江工业大学 |
主分类号: | B25J9/16 | 分类号: | B25J9/16 |
代理公司: | 杭州天正专利事务所有限公司 33201 | 代理人: | 王兵 |
地址: | 310014 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及基于深度强化学习的机械臂六自由度实时抓取方法。包括如下步骤:步骤一:通过双目相机采集抓取操作台上物体的图像信息;步骤二:利用YOLOv5剪枝网络模型对图像进行目标检测训练;步骤三:建立强化学习网络模型;步骤四:通过机器人正逆运动学完成机械臂抓取移动;步骤五:进行强化学习模型训练,使得机械臂完成抓取动作;本发明克服现有技术的缺点,提出一种易实现、适用性高的,基于YOLOv5剪枝网络和Policy Gradient强化学习方法的实时物体检测系统,此系统在保证高精度的同时,可以实现快速实时的目标检测并完成抓取动作。 | ||
搜索关键词: | 一种 基于 深度 强化 学习 机械 自由度 实时 抓取 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110972705.X/,转载请声明来源钻瓜专利网。