[发明专利]一种基于深度学习的自然图像抠图方法有效
申请号: | 201911274458.5 | 申请日: | 2019-12-12 |
公开(公告)号: | CN111161277B | 公开(公告)日: | 2023-04-18 |
发明(设计)人: | 赖剑煌;邓卓爽 | 申请(专利权)人: | 中山大学 |
主分类号: | G06T7/11 | 分类号: | G06T7/11;G06T7/194;G06N3/04;G06N3/08 |
代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 刘巧霞 |
地址: | 510275 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的自然图像抠图方法,其包括以下步骤:获取抠图数据集,并进行数据增强;搭建具有编码器‑解码器结构的自然图像抠图模型,为保留细节信息,设计编码器使其下采样倍数为4,为弥补下采样倍数下降带来的感受野变小,引入空洞卷积扩大感受野,保存最大池化操作中最大像素位置,以便为上采样阶段提供位置信息;为解决多尺度问题,在编码器顶部连接一个空洞空间金字塔模块;在解码器中设计全局语境模块,用于融合所述编码器与解码器对应的高层特征;最后训练并测试。本发明在提取特征过程中保留更多细节信息,同时关联多尺度特征,使模型能捕抓到全局信息,有利于模型处理细节以及大面积透明物体,提升抠图质量。 | ||
搜索关键词: | 一种 基于 深度 学习 自然 图像 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201911274458.5/,转载请声明来源钻瓜专利网。