[发明专利]构建CNN-GB模型的方法及系统、数据特征分类方法在审

专利信息
申请号: 201811257725.3 申请日: 2018-10-26
公开(公告)号: CN109359610A 公开(公告)日: 2019-02-19
发明(设计)人: 徐舫舟;许晓燕;舒明雷;张迎春 申请(专利权)人: 齐鲁工业大学;山东省计算中心(国家超级计算济南中心)
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/08
代理公司: 济南信达专利事务所有限公司 37100 代理人: 孙园园
地址: 250353 山东省济南*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了构建CNN‑GB模型的方法及系统、数据特征分类方法,属于人工智能BCI技术领域,解决的问题是如何结合CNN模型和GB算法对脑电信号进行特征提取与分类识别,得到效能高的最优特征集,使其分类精确度高。其方法包括采集脑电数据;基于Caffe深度学习框架构建CNN网络模型;训练CNN网络模型;训练GB网络模型。其系统包括脑电数据采集模块、CNN网络配置模块和GB网络配置模块。其分类方法包括采集脑电数据;获得训练后的CNN网络模型和训练后的GB网络模型;由训练后的CNN网络模型对脑电数据进行特征提取,由训练后的GB网络模型对提取的特征进行分类。结合CNN模型和GB算法提高了分类精确度。
搜索关键词: 网络模型 分类 网络配置模块 采集脑电 脑电数据 数据特征 特征提取 构建 算法 人工智能 采集模块 分类识别 框架构建 脑电信号 特征集 学习
【主权项】:
1.构建CNN‑GB模型的方法,其特征在于包括如下步骤:S100、采集脑电数据,并对脑电数据进行预处理;S200、基于Caffe深度学习框架构建CNN网络模型,CNN网络模型包括但不限于卷积层、池化层、全连接层和损失层;S300、选取一部分脑电数据作为训练集,通过训练集训练CNN网络模型并更新CNN网络模型的网络参数,得到训练后的CNN网络模型,并输出脑电数据的特征;S400、通过脑电数据的特征训练GB网络模型并更新GB网络模型的网络参数,得到训练后的GB网络模型;上述训练后的CNN网络模型用于对脑电数据进行特征提取,上述训练后的GB网模型用于对提取的特征进行分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于齐鲁工业大学;山东省计算中心(国家超级计算济南中心),未经齐鲁工业大学;山东省计算中心(国家超级计算济南中心)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811257725.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top