[发明专利]一种基于改进YOLOv2的无人驾驶中行人检测方法有效
申请号: | 201810675999.8 | 申请日: | 2018-06-27 |
公开(公告)号: | CN108985186B | 公开(公告)日: | 2022-03-01 |
发明(设计)人: | 石英;罗佳齐;李振威 | 申请(专利权)人: | 武汉理工大学 |
主分类号: | G06V40/10 | 分类号: | G06V40/10;G06V10/762;G06V10/764;G06V10/82;G06K9/62 |
代理公司: | 湖北武汉永嘉专利代理有限公司 42102 | 代理人: | 许美红 |
地址: | 430070 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于改进YOLOv2的无人驾驶中行人检测方法。首先通过KITTI数据集训练YOLOv2网络,得到训练模型。然后,通过车载摄像头捕捉视频,将视频中的每一帧作为YOLOv2网络的输入,并将训练模型导入YOLOv2网络。接着运行网络,初步得到检测出的行人的位置信息和概率。最后对部分不可能包含行人目标区域建议框进行筛除之后,再利用非极大值抑制得到最终行人检测框。本发明能有效的应用于无人驾驶中行人检测。 | ||
搜索关键词: | 一种 基于 改进 yolov2 无人驾驶 行人 检测 方法 | ||
【主权项】:
1.一种基于改进YOLOv2的无人驾驶中行人检测方法,其特征在于,该方法包括以下步骤:S1、获取用于行人检测的KITTI数据集,采用YOLOv2网络对数据集进行训练,将YOLOv2网络的输出设置为行人和非行人两类,对KITTI数据集的行人标定框长和宽进行kmeans聚类,并将聚类测度设置为IOU测度;训练时,通过对数据集进行扩充,并采用OHEM方法从含有大量非行人的候选样本的数据集中选择行人样本进行训练,得到训练模型;S2、通过车载摄像头获取捕捉视频,从视频中提取每一帧的待检测图像作为改进的YOLOv2网络的输入,并将训练模型导入改进的YOLOv2网络,初步检测出的行人的位置信息和概率,得到包含行人初步检测结果的建议框;最后对其中的行人目标区域的建议框进行筛除,利用非极大值抑制得到最终行人检测框。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉理工大学,未经武汉理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810675999.8/,转载请声明来源钻瓜专利网。