[发明专利]用于深度神经网络频繁传输的压缩方法及系统有效
申请号: | 201810528239.4 | 申请日: | 2018-05-29 |
公开(公告)号: | CN108665067B | 公开(公告)日: | 2020-05-29 |
发明(设计)人: | 段凌宇;陈子谦;楼燚航;黄铁军 | 申请(专利权)人: | 北京大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04 |
代理公司: | 北京辰权知识产权代理有限公司 11619 | 代理人: | 刘广达 |
地址: | 100871*** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了用于深度神经网络频繁传输的压缩方法及系统,扩展深度神经网络压缩至传输领域,利用深度神经网络模型之间的潜在冗余性进行压缩,减少深度神经网络在频繁传输下的开销。本发明的优势在于:本发明结合了深度神经网络在频繁传输上的多个模型之间的冗余性,利用了深度神经网络之间的知识信息进行压缩,减少了所需传输的大小和带宽。在相同带宽限制下,能更好地将深度神经网络进行传输,同时允许深度神经网络在前端进行针对性压缩的可能,而非只能将深度神经网络进行针对性压缩后进行部分的还原。 | ||
搜索关键词: | 用于 深度 神经网络 频繁 传输 压缩 方法 系统 | ||
【主权项】:
1.一种用于深度神经网络频繁传输的压缩方法,其特征在于,包括:基于本次和历史传输的一个或多个深度神经网络模型,将待传输模型部分或全部与历史传输的模型之间部分或全部的模型差异进行组合,生成一个或多个预测残差,并将相关预测所需信息进行传输;基于接收到的一个或多个量化的预测残差和在接收端存储的深度神经网络进行组合,对原存储的深度神经网络模型进行替换或累加,生成接收的深度神经网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京大学,未经北京大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810528239.4/,转载请声明来源钻瓜专利网。