[发明专利]一种基于深度学习的轮胎缺陷智能检测方法有效
申请号: | 201810448921.2 | 申请日: | 2018-05-11 |
公开(公告)号: | CN108711148B | 公开(公告)日: | 2022-05-27 |
发明(设计)人: | 陈亮;齐宏伟;饶兵;刘韵婷 | 申请(专利权)人: | 沈阳理工大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/11;G06T3/40;G06T7/13 |
代理公司: | 沈阳智龙专利事务所(普通合伙) 21115 | 代理人: | 周智博;宋铁军 |
地址: | 110000 辽*** | 国省代码: | 辽宁;21 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度学习的轮胎缺陷智能检测方法,该方法在原有X光检测设备的基础上,通过视频分配器,将原有视频分为2路,一路供操作员进行人工判定,另一路通过高速视频采集卡采集X光图像并送入识别系统;利用人工智能技术实现自动化,提高生产率,节省劳动成本。 | ||
搜索关键词: | 一种 基于 深度 学习 轮胎 缺陷 智能 检测 方法 | ||
【主权项】:
1.一种基于深度学习的轮胎缺陷智能检测方法,采用该方法对半钢/全钢轮胎进行缺陷检测及识别,其特征在于:该方法在原有X光检测设备的基础上,通过视频分配器,将原有视频分为2路,一路供操作员进行人工判定,另一路通过高速视频采集卡采集X光图像并送入识别系统;其按照以下步骤进行:(1)识别系统经过高速采集卡将X光图像采集进管理服务器,管理服务器将图像进行拼接后,生成一个轮胎的完整图像,然后将图像根据胎冠、胎侧部分为左中右三个区域,每个区域为边长0.4×bw的正方形,再加上按bw×0.4bw截取的整体情况作为第四个区域,形成四个识别区域,其中bw为X光图像的宽度;(2)按区域分割以后,将分割后的数据送入计算单元群并通过识别算法对轮胎缺陷进行识别,识别后的结果送回管理服务器;(3)根据现场经验对每一种轮胎缺陷设定一个置信率Ci,大于Ci的识别结果直接显示该缺陷类别,小于Ci的识别结果则需要现场操作人员人为判定是否为真实缺陷;(4)将小于Ci的误判样本作为新样本,自动补充到样本库,训练服务器定期自动精训一次,将精训形成的参数自动更新到计算单元群中。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于沈阳理工大学,未经沈阳理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810448921.2/,转载请声明来源钻瓜专利网。