[发明专利]一种基于深度卷积神经网络的五金件缺陷分类识别方法在审
申请号: | 201710707883.3 | 申请日: | 2017-08-17 |
公开(公告)号: | CN107481231A | 公开(公告)日: | 2017-12-15 |
发明(设计)人: | 王宏杰;李海艳;黄运保 | 申请(专利权)人: | 广东工业大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06N3/08;G06N3/04;G06K9/62 |
代理公司: | 佛山市禾才知识产权代理有限公司44379 | 代理人: | 刘羽波 |
地址: | 510009 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度卷积神经网络的五金件缺陷分类识别方法,包括以下步骤;建立网络,构造一个深度卷积神经网络;训练网络,将采集到的图像分为两大类,即训练集和测试集,所述训练集占采集到图像总数的70%,所述测试集占采集到图像总数的30%;缺陷识别,将测试集中的五金件图像输入已经训练好的网络,查看输出结果,将识别结果与图像的标签进行对照,统计正确识别率和错误识别率。本算法中使用深度卷积神经网络,省去了复杂的图像处理算法,通过增加网络深度,提取到缺陷更加抽象的特征,使不同缺陷类别间具有更强的可区分性,识别率更高。 | ||
搜索关键词: | 一种 基于 深度 卷积 神经网络 五金件 缺陷 分类 识别 方法 | ||
【主权项】:
一种基于深度卷积神经网络的五金件缺陷分类识别方法,其特征在于,包括以下步骤:A.建立网络,构造一个深度卷积神经网络;B.训练网络,将采集到的图像分为两大类,即训练集和测试集,所述训练集占采集到图像总数的70%,所述测试集占采集到图像总数的30%;C.缺陷识别,将测试集中的五金件缺陷图像输入已经训练好的网络,查看输出结果,将识别结果与图像的标签进行对照,统计正确识别率和错误识别率。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东工业大学,未经广东工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710707883.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种基于图像采集的智能化玻璃清洁机器手控制系统
- 下一篇:图形匹配方法