[发明专利]训练分类模型的方法与装置在审

专利信息
申请号: 201710608188.1 申请日: 2017-07-24
公开(公告)号: CN110019770A 公开(公告)日: 2019-07-16
发明(设计)人: 王雅圣;张旸;毕舒展;颜友亮 申请(专利权)人: 华为技术有限公司
主分类号: G06F16/35 分类号: G06F16/35;G06K9/62
代理公司: 北京龙双利达知识产权代理有限公司 11329 代理人: 王龙华;毛威
地址: 518129 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 本申请提供一种训练分类模型的方法与装置,该方法包括:获取正训练集与第一负训练集,正训练集包括语料中正例集的样本,第一负训练集包括语料中未标注样本集的样本,未标注样本集表示语料中不属于词典的样本集;利用正训练集与第一负训练集,训练得到第一分类模型;利用第一分类模型确定第一负训练集中的伪负样本,伪负样本表示第一负训练集中被视为正样本的样本;剔除第一负训练集中的伪负样本,更新第一负训练集为第二负训练集;利用正训练集与第二负训练集,训练得到第二分类模型,第二分类模型为目标分类模型。因此,本申请提供的方法能够有效提高分类模型的准确度,当利用分类模型扩展词典时,也可以提高词典的准确度。
搜索关键词: 训练集 分类模型 负样本 样本集 语料 样本 准确度 训练分类 标注 目标分类 正样本 申请 剔除 更新
【主权项】:
1.一种训练分类模型的方法,其特征在于,包括:获取正训练集与第一负训练集,所述正训练集包括语料中正例集的样本,所述第一负训练集包括所述语料中未标注样本集的样本,所述正例集表示所述语料中属于词典的样本集,所述未标注样本集表示所述语料中的不属于所述词典的样本集;利用所述正训练集与所述第一负训练集,训练得到第一分类模型;利用所述第一分类模型确定所述第一负训练集中的伪负样本,所述伪负样本表示所述第一负训练集中被视为正样本的样本;剔除所述第一负训练集中的伪负样本,更新所述第一负训练集为第二负训练集;利用所述正训练集与所述第二负训练集,训练得到第二分类模型,所述第二分类模型为目标分类模型。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华为技术有限公司,未经华为技术有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710608188.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top