[发明专利]一种基于深度学习的机器人闭环检测方法有效

专利信息
申请号: 201710018162.1 申请日: 2017-01-11
公开(公告)号: CN106780631B 公开(公告)日: 2020-01-03
发明(设计)人: 刘国良;赵洋;田国会;张威 申请(专利权)人: 山东大学
主分类号: G06T7/80 分类号: G06T7/80;G06T7/90;G06K9/00
代理公司: 37221 济南圣达知识产权代理有限公司 代理人: 张勇
地址: 250061 山*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于深度学习的机器人闭环检测方法,包括(1)获取首帧环境的RGB图像和三维数据,将环境的RGB图像和三维数据进行配准获得环境的RGB+DEPTH四通道图像,将所述RGB+DEPTH四通道图像输入到卷积神经网络中,采用卷积神经网络的中间层输出作为首帧的特征提取结果;(2)采用(1)的方法获取连续N帧的特征提取结果;(3)将第N帧与第M帧的特征提取结果进行特征匹配,根据特征匹配结果判断闭环是否发生,其中M+1<N。
搜索关键词: 一种 基于 深度 学习 机器人 闭环 检测 方法
【主权项】:
1.一种基于深度学习的机器人闭环检测方法,其特征在于:/n(1)获取首帧环境的RGB图像和三维数据,将环境的RGB图像和三维数据进行配准获得环境的RGB+DEPTH四通道图像,将所述RGB+DEPTH四通道图像输入到卷积神经网络中,采用卷积神经网络的中间层输出作为首帧的特征提取结果;/n(2)采用(1)的方法获取连续N帧的特征提取结果;/n(3)将第N帧与第M帧的特征提取结果进行特征匹配,根据特征匹配结果判断闭环是否发生,其中M+1<N;/n对机器人的摄像机进行标定,得到摄像机的内外参数,根据摄像机内外参数将所述三维数据投影到所述环境的RGB图像平面,并采用像素插值结合平滑处理方法生成对应的深度图像;/n选取多个关键帧作为候选帧集合,第M帧出自于所述候选帧集合;/n将第N帧与第M帧的特征提取结果记为第1结果,将第M帧相邻帧与第N帧的特征提取结果也分别进行特征匹配,并记为第w结果,其中w>1,第M帧相邻帧为以第M帧为中心的前后多帧;若第1结果判断发生闭环,且第w结果也判断发生闭环,则决策认为发生真闭环;若第1结果判断发生闭环,且第w结果判断未发生闭环,则决策认为发生伪闭环。/n
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710018162.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top