[发明专利]一种图像中的物体检测方法及装置有效

专利信息
申请号: 201611248557.2 申请日: 2016-12-29
公开(公告)号: CN106780612B 公开(公告)日: 2019-09-17
发明(设计)人: 叶昕 申请(专利权)人: 浙江大华技术股份有限公司
主分类号: G06T7/73 分类号: G06T7/73;G06K9/62;G06K9/46
代理公司: 北京同达信恒知识产权代理有限公司 11291 代理人: 黄志华
地址: 310053 浙江*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例公开了一种图像中的物体检测方法及装置,用以提高物体检测的实时性,该方法中将待检测的图像输入到预先训练完成的卷积神经网络中,该卷积神经网络在图像中确定每个候选区域对应的特征向量,针对每个候选区域对应的特征向量,当特征向量中类别参数的最大值大于设定阈值时,确定所述候选区域包含的物体的类别,并根据所述特征向量中的位置参数,确定所述候选区域包含的物体的位置信息。由于本发明实施例采用卷积神经网络在进行检测时确定了候选区域,计算每个候选区域对应的特征向量,从而识别每个物体的类别和位置,无需进行重复操作,提高了检测的实时性。
搜索关键词: 一种 图像 中的 物体 检测 方法 装置
【主权项】:
1.一种图像中的物体检测方法,其特征在于,应用于电子设备,所述方法包括:将待检测的图像输入到预先训练完成的第一卷积神经网络中,其中所述第一卷积神经网络在所述图像中识别每个包含物体的候选区域,对每个候选区域进行自适应下采样后进行全连接计算,确定每个候选区域对应的特征向量,其中所述特征向量中包含所述候选区域的位置参数和多个类别参数;针对每个候选区域对应的特征向量,识别所述特征向量中类别参数的最大值,当所述最大值大于设定阈值时,确定所述候选区域包含的物体的类别为所述最大值的类别参数对应的类别,并根据所述特征向量中的位置参数,确定所述候选区域包含的物体的位置信息;其中,所述第一卷积神经网络包括多对卷积层和下采样层,且包括最后一层卷积层,所述第一卷积神经网络采用与所述最后一层卷积层串联的两个并联的全连接卷积层在所述图像中识别每个包含物体的候选区域。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江大华技术股份有限公司,未经浙江大华技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611248557.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top