[发明专利]基于深度卷积神经网络特征融合的目标跟踪方法及系统有效

专利信息
申请号: 201610371378.1 申请日: 2016-05-30
公开(公告)号: CN106056628B 公开(公告)日: 2019-06-18
发明(设计)人: 秦磊;齐元凯;张盛平;姚鸿勋;黄庆明;林钟禹;杨明轩 申请(专利权)人: 中国科学院计算技术研究所
主分类号: G06T7/246 分类号: G06T7/246
代理公司: 北京律诚同业知识产权代理有限公司 11006 代理人: 祁建国;梁挥
地址: 100190 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出基于深度卷积神经网络特征融合的目标跟踪方法及系统,涉及模式识别技术领域,该方法包括步骤1,通过深度卷积神经网络,获取视频图像中目标的多种特征,通过滤波器方法计算每种特征的特征置信权重,根据特征置信权重,获取目标当前的跟踪目标位置;步骤2,计算每种特征当前帧的预测精度损失,并根据预测精度损失,对每种特征,建立在△t时间内的稳定性模型,通过稳定性模型计算每个特征在当前帧的稳定性,根据每种特征的稳定性及累积的预测精度损失,更新每种特征的置信权重;步骤3,重复步骤1至步骤2完成所有帧的目标跟踪。本发明合理地融合多种特征的跟踪结果,实现鲁棒的目标跟踪。
搜索关键词: 基于 深度 卷积 神经网络 特征 融合 目标 跟踪 方法 系统
【主权项】:
1.一种基于深度卷积神经网络特征融合的目标跟踪方法,其特征在于,包括:步骤1,通过深度卷积神经网络,获取视频图像中目标的多种特征,通过滤波器方法计算每种特征的特征置信权重,根据特征置信权重,获取目标当前的跟踪目标位置;步骤2,计算每种特征当前帧的预测精度损失,并根据预测精度损失,对每种特征,建立在△t时间内的稳定性模型,通过稳定性模型计算每个特征在当前帧的稳定性,根据每种特征的稳定性及累积的预测精度损失,更新每种特征的置信权重;步骤3,重复步骤1至步骤2完成所有帧的目标跟踪;其中步骤2中更新每种特征的置信权重的公式为:其中,w为置信权重,每种特征的R度量的量化方式为:其中表示第k种特征在第t帧的稳定性,rtk是第k种特征在t时刻的r度量,是平均损失,是第k种特征的从开始时刻到t时刻的累积r度量,ct是尺度因子,是平衡系数,g是的最大值,为第k种特征在t时刻的损失。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610371378.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top