[发明专利]一种智能驾驶和巡航工况下的能量管理方法及系统有效
申请号: | 202110608004.8 | 申请日: | 2021-06-01 |
公开(公告)号: | CN113401137B | 公开(公告)日: | 2023-05-09 |
发明(设计)人: | 梅建元;郝义国 | 申请(专利权)人: | 黄冈格罗夫氢能汽车有限公司 |
主分类号: | B60W60/00 | 分类号: | B60W60/00;B60W30/14;B60R16/023 |
代理公司: | 武汉知产时代知识产权代理有限公司 42238 | 代理人: | 龚春来 |
地址: | 438000 湖*** | 国省代码: | 湖北;42 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | |||
搜索关键词: | 一种 智能 驾驶 巡航 工况 能量 管理 方法 系统 | ||
本发明提供一种智能驾驶和巡航工况下的能量管理方法及系统,涉及氢能汽车技术领域,适用于急加速动力需求情景,包括如下步骤:激活智能驾驶功能和巡航功能;在急加速及高速动力需求的条件下,目标请求扭矩大于驾驶员油门踏板请求扭矩,由整车控制器VCU计算虚拟油门踏板深度;根据虚拟油门踏板深度和整车控制器VCU,计算燃料电池请求功率。本发明通过智能驾驶和巡航工况的扭矩请求来虚拟油门踏板深度,获取燃料电池功率请求,从而来满足智能驾驶和巡航工况下的加速需求。
技术领域
本发明涉及氢能汽车技术领域,具体而言,涉及一种智能驾驶和巡航工况下的能量管理方法及系统。
背景技术
自动驾驶域控制器(ACU-Automated-driving Control Unit)是一种自动驾驶汽车或车辆高级辅助驾驶的主控制器,它能够将计算密集型传感器数据处理和传感器融合工作与控制策略开发集成到一个控制单元中,并有助于建立结构化和有组织的整车控制器网络。
ACU是专为车辆自动智能驾驶系统而开发设计的,控制器能够从多个传感器接收数据,例如摄像头、毫米波雷达、激光雷达以及云数据传输V2X等,并且通过整车控制器VCU获取车辆动态数据(例如车辆速度、踏板信号),ACU支持基于所有输入定制控制策略和执行决策,ACU控制器输出被用于驾驶状态反馈,车辆驾驶控制以及执行车辆上的各种自动驾驶控制或辅助驾驶功能。
氢能源汽车一般均配备有燃料电池、动力电池作为动力源,但动力电池容量较小,一般小于10kwh,在人工驾驶模式下,VCU能量管理策略会根据动力电池SOC(CAN信号)及油门深度(硬线采集)进行燃料电池功率请求,通过油门深度进行燃电功率请求可以满足急加速及高速动力需求。
然而在智能驾驶及巡航非超越加速模式时,还存在无油门踏板操作的急加速工况,对于上述人工驾驶模式下的能量管理策略,已经不能完全适用。
发明内容
针对现有技术存在的上述不足,本发明的目的在于提供一种智能驾驶和巡航工况下的能量管理方法及系统,以解决现有人工驾驶模式下的能量管理策略不适用于智能驾驶和巡航非超越加速模式时急加速工况的能量控制技术问题。
为解决上述问题,本发明提供一种智能驾驶和巡航工况下的能量管理方法,所述能量管理方法适用于急加速动力需求情景,包括如下步骤:
S1:激活智能驾驶功能和巡航功能;
S2:在急加速及高速动力需求的条件下,目标请求扭矩大于驾驶员油门踏板请求扭矩,由整车控制器VCU计算虚拟油门踏板深度;
S3:根据虚拟油门踏板深度和整车控制器VCU,计算燃料电池请求功率。可选的,在步骤S1中,所述巡航功能包括定速巡航和自适应巡航功能,在所述巡航功能的工作模式下,所述能量管理方法采用非超越加速模式和超越加速模式。
可选的,在所述非超越加速模式时,结合动力电池SOC和虚拟油门踏板深度的功率请求,来计算燃料电池请求功率。
可选的,在步骤S3中,所述根据虚拟油门踏板深度和整车控制器VCU,计算燃料电池请求功率,具体包括如下步骤:
S31:当处在定速巡航状态时,整车控制器VCU判断驾驶员通过巡航开关设置的目标车速与实际车速的差值,并通过PI调节计算目标请求扭矩;
S32:当处在自适应巡航状态时,整车控制器VCU接收ESP模块的加速度,并将加速度转化为目标请求扭矩进行响应,或ESP模块直接发送目标请求扭矩给整车控制器VCU进行响应。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于黄冈格罗夫氢能汽车有限公司,未经黄冈格罗夫氢能汽车有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110608004.8/2.html,转载请声明来源钻瓜专利网。
- 上一篇:一种基于双量估计法的单光子激光透雾方法
- 下一篇:一种新式缝纫机