[发明专利]一种基于多重核字典学习的未知目标判别方法有效

专利信息
申请号: 202110532916.1 申请日: 2021-05-17
公开(公告)号: CN113156416B 公开(公告)日: 2022-05-17
发明(设计)人: 周代英;骆军苏;周爱霞;晏钰坤 申请(专利权)人: 电子科技大学
主分类号: G01S13/52 分类号: G01S13/52;G06K9/62
代理公司: 成都点睛专利代理事务所(普通合伙) 51232 代理人: 孙一峰
地址: 611731 四川省*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 多重 字典 学习 未知 目标 判别 方法
【说明书】:

发明属于目标识别技术领域,具体的说是涉及一种基于多重核字典学习的未知目标判别方法。本发明首先利用核方法将雷达高分辨一维距离像映射到高维特征空间,基于多重核字典学习算法获取字典,通过多重核字典对输入一维距离像进行核稀疏表示得到重构误差,实现对未知目标的判别。本方法通过核稀疏表示有效描述了一维距离像数据中呈现的非线性分布特性,从而改善了对未知目标的判别性能。

技术领域

本发明属于目标识别技术领域,具体的说是涉及一种基于多重核字典学习的未知目标判别方法。

背景技术

高分辨一维距离像表示目标对高距离分辨率雷达脉冲的时域响应,提供了有关目标的结构信息,有利于提高对目标的识别性能。常规的雷达目标识别利用已知类别的目标数据进行训练,建立特征库,以达到对目标识别的目的。在实际应用中,有些目标的数据无法事先获得,因未参与训练建库,将被错误识别为已知目标类别,因此,对未知目标的判别具有重要的实际意义。

现有基于门限的子空间未知目标判别方法通过提取目标的子空间特征,构造判别门限,对目标进行判别。例如本征子空间判别方法通过提取主投影分量特征进行判别,而正则子空间判别方法则利用最优分离特征进行判别。通常情况下,这些方法都能获得好的判别结果。但是,当一维距离像数据分布中出现较明显的非线性特性时,这些线性方法的判别性能明显下降。因此,在一维距离像数据出现非线性分布的条件下,现有方法的性能有进一步改善的余地。

发明内容

针对上述问题,本发明提出了一种基于多重核字典学习的未知目标判别方法。该方法通过多重核字典算法进行学习,获取核字典,有效描述数据中的非线性分布特性,从而改善对未知目标的判别率。

本发明的技术方案是:

一种基于多重核字典学习的未知目标判别方法,包括以下步骤:

S1、设已知目标一维距离像训练样本集Y为:

Y=[y1,y2,...,yN]

其中,yi是第i个m维的训练一维距离像样本,i=1,2,...,N,N为训练样本的个数;

通过非线性变换Φ(·)将训练目标Y映射到高维特征空间:

Φ(Y)=[Φ(y1),Φ(y2),...,Φ(yN)]

其中,Φ(Y)为高维映射特征矩阵,由稀疏分析原理可得,核字典Φ(D)为训练样本的高维映射特征的线性组合:

Φ(D)=Φ(Y)A

其中,A=[a1,a2,...,aK]是字典组合系数矩阵,ak是第k个字典组合系数矩阵列向量(N维),1≤k≤K;利用核字典Φ(D)对Φ(Y)进行核稀疏表示:

Φ(Y)=Φ(D)X

其中,X=[x1,x2,...,xN]是核稀疏矩阵,xi是核稀疏矩阵X的第i个列向量,1≤i≤N(K维);利用核正交匹配追踪算法得到核稀疏矩阵X,引入核函数,得到对训练样本集的核稀疏表示重构误差e为:

其中,T表示矩阵转置,I为单位矩阵,tr(·)表示取矩阵的迹,是N×N维的核矩阵,中第i行第j列的元素为:

其中,κ(yi,yj)为核函数;

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学,未经电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110532916.1/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top