[发明专利]一种机器人人机交互方法有效

专利信息
申请号: 202110206075.5 申请日: 2021-02-24
公开(公告)号: CN112873211B 公开(公告)日: 2022-03-11
发明(设计)人: 刘华平;陆升阳;张新钰;袁小虎;赵怀林 申请(专利权)人: 清华大学
主分类号: B25J9/16 分类号: B25J9/16;G01C21/00;G01S17/86;G01S17/89
代理公司: 北京清亦华知识产权代理事务所(普通合伙) 11201 代理人: 罗文群
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 机器人 人机交互 方法
【权利要求书】:

1.一种机器人人机交互方法,其特征在于该方法包括:

拍摄环境的RGB图像与深度图,利用激光雷达探测障碍物信息,获取障碍物数组,对获取数据进行归一化处理,构建人机交互中的问题编码网络将问题进行编码;构建图像特征提取网络,将RGB图像与深度图像信息提取成为一个特征矩阵,将激光雷达数据、问题编码和特征矩阵进行拼接得到特征融合矩阵;采用卷积网络获取数据融合矩阵作为周边环境的数据融合矩阵;训练一个循环神经网络作为导航器,将数据融合矩阵作为输入,输出为“前,左,右,停止”动作之一,控制机器人运动方向;具体步骤如下:

(1)拍摄环境的RGB图像与深度图,称为环境图像,环境图像为一个3*(w*h)图像,环境图像中含有3个图层,每一个图层的尺寸为(w*h),利用下式,对环境图像进行归一化处理:

式中,代表归一化后环境图像中像素点的值,xi代表原环境图像中像素点的值,xmin代表像素点的最小值,xmax代表像素点的最大值;

(2)构建一个卷积神经网络,具体包括以下步骤:

设定卷积神经网络的第一层为卷积层,该卷积层的卷积核为5*5的矩阵,通道数为8;卷积神经网络的第二层为非线性激活层,非线性激活函数为relu函数,将卷积层的输出作为该层输入,增加网络的非线性,卷积神经网络的的第三层为数据归一化层,该层的输入为非线性激活层的输出;

(3)利用上述步骤(2)的卷积神经网络,对步骤(1)的环境图像进行特征提取,得到环境特征融合矩阵L,包括以下步骤:

(3-1)将步骤(1)归一化处理后的环境图像输入到步骤(2)的卷积神经网络中,卷积神经网络输出RGB图像的特征矩阵M与深度图的特征矩阵G;

(3-2)将步骤(3-1)的特征矩阵M与特征矩阵G相加,得到融合矩阵K,将融合矩阵K进行矩阵变换,得到环境特征融合矩阵L,L为1*1*128的矩阵;

(4)探测障碍物信息,记为障碍物数组Z,利用下式,对障碍物数组Z进行归一化处理得到归一化后的矩阵Zj

式中,代表归一化处理后障碍物数组的值,zj代表原障碍物数组的值,zmin代表障碍物数组的最小值,zmax代表障碍物数组的最大值;

对归一化后的矩阵Zj进行线性变换,得到障碍物特征矩阵N,N为1*1*64的矩阵;

(5)构建一个问题编码网络,具体包括以下步骤:

(5-1)设定问题编码网络的第一层为第一长短时记忆层,第一长短时记忆层的神经元个数是128个,问题编码网络的第二层为长短时记忆层,第二层为长短时记忆层的神经元个数是128个,得到一个问题编码网络;

(5-2)将人机交互问题中的单词进行编号;

(5-3)将步骤(5-2)的进行编号后的人机交互问题中的单词输入步骤(5-1)的问题编码网络,问题编码网络输出一个问题矩阵,对问题矩阵进行变换,得到问题特征矩阵O,问题特征矩阵O为1*1*64的矩阵;

(6)对步骤(3)的环境特征融合矩阵L、步骤(4)的障碍物特征矩阵N和步骤(5)的问题特征矩阵O,按照通道数进行矩阵拼接,得到特征融合矩阵P,特征融合矩阵P为1*1*256的矩阵;

(7)设计一个卷积网络,该卷积网络的卷积核为1*1的矩阵,卷积网络的通道数为64,将步骤(6)的特征融合矩阵P输入该卷积网络,卷积网络输出一个数据融合矩阵Q;

(8)建立一个循环神经网络,该循环神经网络的第一层为长短期记忆网络,长短期记忆网络中的神经元个数为64个,该循环神经网络的第二层为线性变换层,该循环神经网络的第三层为softmax分类层,softmax分类层的神经元个数为4个;循环神经网络最终输出为“前,左,右,停止”四个动作中的一个;

(9-1)利用步骤(7)数据融合矩阵Q对步骤(8)的循环神经网络进行训练,得到一个导航器,即向步骤(8)的循环神经网络输入数据融合矩阵Q,循环神经网络输出为“前,左,右,停止”四个动作,在循环神经网络训练中,利用损失函数,计算损失值Loss:

其中i为动作序号,为第i个输出动作,将第i个输出动作与输入数据融合矩阵Q中的相应动作进行比较,若输出动作与数据融合矩阵Q中的相应动作相同,则记yi为1,若输出动作与数据融合矩阵Q中的相应动作不相同,则记yi为0;

(9-2)设定损失值Loss的阈值,损失值Loss的阈值为0.5,采用损失函数计算每一次训练的损失值,当损失值小于阈值时,完成导航器的训练;

(10)利用步骤(9-2)的导航器进行导航,导航器的表达式为:

at,ht←LSTM(ht-1,It0,Q,at-1)

其中,t表示机器人走的步数,at表示机器人第t步的移动方向,ht表示第t步循环神经网络中长短期记忆网络的隐藏层输出,at-1表示上个步骤(9-1)的动作输出,ht-1表示上个步骤长短期记忆网络的隐藏状态,Q表示问题的编码,It0表示第t步时步骤(7)的整个长短期记忆网络的数据融合输入,←表示导航器的输出方式;

向该导航器输入步骤(5)的问题编码、步骤(1)的RGB图像和深度图像以及步骤(8)的上一时刻长短期记忆层的隐藏状态,导航器输出前、左、右或停止导航四个指令中的一个,实现机器人的人机交互。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110206075.5/1.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top