[发明专利]基于粒计算的电动汽车故障诊断神经网络方法在审
| 申请号: | 201910225719.8 | 申请日: | 2019-03-25 |
| 公开(公告)号: | CN110084366A | 公开(公告)日: | 2019-08-02 |
| 发明(设计)人: | 孔慧芳;盛阳;胡杰;张晓雪 | 申请(专利权)人: | 合肥工业大学智能制造技术研究院 |
| 主分类号: | G06N3/08 | 分类号: | G06N3/08;G06N3/04;G01R31/00;G01M17/007;G01M15/04 |
| 代理公司: | 合肥和瑞知识产权代理事务所(普通合伙) 34118 | 代理人: | 王挺 |
| 地址: | 230000*** | 国省代码: | 安徽;34 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 决策信息系统 故障诊断 电动汽车 神经网络 输出故障 诊断结果 属性集 信息处理器 故障样本 网络规模 学习训练 训练样本 智能性 采样 约简 诊断 | ||
本发明提供了一种基于粒计算的电动汽车故障诊断神经网络方法。本方法将粒计算作为BP神经网络的前端信息处理器,利用粒计算对决策信息系统进行约简,得到决策信息系统的最小属性集R,将所得到的决策信息系统的最小属性集R作为BP神经网络的训练样本,再将采样到的故障样本数据输入到训练好的BP神经网络中,输出故障诊断结果;本发明降低了BP神经网络的网络规模并减少了BP神经网络的学习训练时间,能较快的输出故障诊断结果,提高了故障诊断的智能性和诊断效率。
技术领域
本发明涉及电动汽车故障诊断领域,尤其涉及一种基于粒计算的电动汽车故障诊断神经网络方法。
技术背景
基于神经网络的故障诊断技术,就是通过对故障信息和诊断经验的训练学习,用分布在网络内部的连接权值来表达所学习的故障诊断知识,它具有对故障模式的联想记忆、模式匹配和相似归纳能力,实现故障与征兆之间复杂的非线性映射关系,对比传统的故障诊断方法,具有许多优点,如:神经网络具有分辨原因及故障类型的能力、神经网络允许样本中带有较大的误差甚至有个别错误、神经网络是从本质上模拟专家直觉且通过量化过程来解决知识中不确定性问题,由于具有可贵的自学习能力,从而避免了复杂的数学建模。
虽然采用神经网络的故障诊断技术是一种更有效、更有前途的诊断方法,但是存在要实现对多个故障模式的诊断需要大量的学习样本,构造特征向量、确定网络结构有一定难度等问题。如《基于神经网络的汽车故障诊断分析》。
论文《基于神经网络的汽车故障诊断分析》(刘欣欣,内燃机与配件期刊论文,2017年12月3日),从提高故障诊断的精度和可靠性出发,针对汽车故障的复杂性、多样性以及诊断中多信息的特点,将神经网络技术应用到故障诊断中。但此方法存在以下不足:
(1)神经网络在对大型复杂问题求解时,学习时间长;
(2)在故障样本数据比较庞大时,神经网络收敛速度慢,甚至难以达到收敛。
发明内容
本发明针对上面所述的一些问题,提供一种基于粒计算的电动汽车故障诊断神经网络方法,能够简化BP神经网络的结构,减少了网络的学习时间,保证故障诊断准确性。
为解决本发明的技术问题,本发明提供了一种基于粒计算的电动汽车故障诊断神经网络方法,将粒计算作为BP神经网络的前端信息处理器,利用粒计算对决策信息系统进行约简,得到决策信息系统的最小属性集R,将所得到的决策信息系统的最小属性集R作为BP神经网络的训练样本,再将采样到的故障样本数据输入到训练好的BP神经网络中,输出故障诊断结果,包括以下步骤:
步骤1,采样故障样本数据,故障样本数据包括加速踏板位置传感器电压、车速、电动机转速,设采样次数为m;
步骤2,对采样到的故障样本数据进行离散化处理,所述的离散化处理过程如下:
步骤2.1,将步骤1采样得到的m个加速踏板位置传感器电压按照其数值进行排序,并将其中的任一个加速踏板位置传感器电压记为传感器电压ug,g=1,2,…,m;将步骤1采样得到的m个车速按照其数值进行排序,并将其中的任一个车速记为车速vg,g=1,2,…,m;将步骤1采样得到的m个电动机转速按照其数值进行排序,并将其中的任一个电动机转速记为电动机转速ng,g=1,2,…,m;
步骤2.2,写出按照步骤2.1排序得到的m个传感器电压的集合Uu、m个车速的集合V和m个电动机转速的集合N的表达式,并进行离散化处理;
则经过离散化得到的传感器电压Uu、经过离散化得到的车速V和经过离散化得到的电动机转速N分别为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学智能制造技术研究院,未经合肥工业大学智能制造技术研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910225719.8/2.html,转载请声明来源钻瓜专利网。





