[发明专利]一种基于孪生-感兴趣区域池化模型的物体检测与匹配方法有效

专利信息
申请号: 201810255893.2 申请日: 2018-03-27
公开(公告)号: CN108416780B 公开(公告)日: 2021-08-31
发明(设计)人: 余春艳;林晖翔;陈吕财;郭文忠 申请(专利权)人: 福州大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/246;G06N3/04
代理公司: 福州元创专利商标代理有限公司 35100 代理人: 蔡学俊
地址: 350108 福建省福*** 国省代码: 福建;35
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 孪生 感兴趣 区域 模型 物体 检测 匹配 方法
【说明书】:

发明涉及一种基于孪生‑感兴趣区域池化模型的物体检测与匹配方法,使用了一个融合了全卷积网络结构和感兴趣区域池化层两个方法的孪生‑感兴趣区域池化模型,采用了全卷积网络结构以适应不同大小的输入单元,通过网络逐层抽象获得判别性特征,并引入相关卷积层用于判定目标框与当前视频帧的特征相似性并输出目标框在当前视频帧中对应位置的响应图,再添加ROI Pooling层以应用于目标检测。本发明能够在复杂情形下仍旧良好地进行检测。

技术领域

本发明涉及目标检测领域,特别是一种基于孪生-感兴趣区域池化模型的物体检测与匹配方法。

背景技术

目标检测是从图像序列中将变化的区域从背景图像中提取出来,从而检测出运动的目标。在医疗诊断方面,目标检测可以有效地分析器官、细胞的运动,为医生提供了辅助诊断信息;在智能交通方面,目标检测可以为车流量统计、行人违规行为检测、车辆超速监测、交通拥堵分析等提供有力的技术支持;在人机交互方面,目标检测为人类提供了一种新的与电脑非接触、灵活的交互方式,例如通过捕捉手势的运动轨迹进而识别以产生输入信息;在自动驾驶方面,可以采用目标检测技术检测并跟踪当前行车前方的行人、车辆和动物等,通过实时收集与目标之间的距离信息控制制动装置以实现车辆在安全行车范围,可以减少事故发生概率。

目标检测的效果会影响目标对象的分类、行为识别等一些后期处理。所以目标检测十分重要。下面介绍一下一些常用的动态视频目标检测与匹配的方法:

背景减除:背景减除方法是目前运动检测中最常用的一种方法,它是利用当前图像与背景图像的差分来检测出运动目标的一种技术。它一般能够提供相对来说比较全面的运动目标的特征数据,但对于动态场景的变化,如光线照射情况和外来无关事件的干扰等也特别敏感。由于该模型是固定的,一旦建立之后,对于该场景图像所发生的任何变化都比较敏感,比如阳光照射方向,影子,树叶随风摇动等。

时间差分:时间差分方法充分利用了视频图像的特征,从连续得到的视频流中提取所需要的动态目标信息。在一般情况下采集的视频图像,若仔细对比相邻两帧,可以发现其中大部分的背景像素均保持不变。只有在有前景移动目标的部分相邻帧的像素差异比较大。时间差分方法就是利用相邻帧图像的相减来提取出前景移动目标的信息的。但在目标运动缓慢时,差分后的运动目标区域内会产生空洞,从而不能完全提取出所有相关的特征像素点,一般不能够完整地分割运动对像,不利于进行相关分析,因此差分法很少被单独使用。

光流法:基于光流方法的运动检测采用了运动目标随时间变化的光流特性,如Meyer等通过计算位移向量光流场来初始化基于轮廓的跟踪算法,从而有效地提取和跟踪运动目标。该方法的优点是在所摄场所运动存在的前提下也能检测出独立的运动目标。然而大多数的光流计算方法相当复杂,且抗噪性能差,如果没有特别的硬件装置则不能被应用于全帧视频流的实时处理。

近年来,基于检测的跟踪方法得益于机器学习方法的不断成熟和应用,主要思想是将目标与背景当作两类对象区分,在有效范围内采用目标检测的方法选取相似度最高的区域。此类方法的主要工作在特征选取和匹配函数的设计上,常见的特征包括局部二值模式特征、方向梯度直方图,以及目前流行的卷积特征,匹配函数主要有支持向量机分类器、基于深度学习的分类、聚类方法等。这类方法能有效克服复杂背景的干扰以应对目标形变、遮挡等问题,但其算法效率较低。

发明内容

有鉴于此,本发明的目的是提出一种基于孪生-感兴趣区域池化模型的物体检测与匹配方法,能够在复杂情形下仍旧良好地进行检测。

本发明采用以下方案实现:一种基于孪生-感兴趣区域池化模型的物体检测与匹配方法,具体包括以下步骤:

步骤S1:将初始帧和候选样本帧输入全卷积网络获取判别性特征;

步骤S2:引入相关卷积层用于判定目标框与当前视频帧的特征相似性并输出目标框在当前视频帧中对应位置的响应图;

步骤S3:添加ROI Pooling层以应用于目标检测。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于福州大学,未经福州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/201810255893.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top