[发明专利]一种基于深度学习的图神经网络交通流预测方法在审

专利信息
申请号: 202310010893.7 申请日: 2023-01-04
公开(公告)号: CN116052419A 公开(公告)日: 2023-05-02
发明(设计)人: 程小辉;何宇豪;陆秋 申请(专利权)人: 桂林理工大学
主分类号: G08G1/01 分类号: G08G1/01;G06Q10/04;G06N3/045;G06N3/0464
代理公司: 暂无信息 代理人: 暂无信息
地址: 541004 广西壮*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于深度学习的图神经网络交通流预测方法。该方法由融合了不同深度学习方法的三个模块:融合特征注意力模块、信息聚合模块和多信息结合模块组成。融合特征注意力模块通过注意力机制和Softmax函数提取不同交通信息间的影响因子,将交通流信息与其他各种交通信息在时间维度上结合,充分考虑了不同交通信息间的时间周期性;信息聚合模块将交通流信息输入GRU网络中提取历史时间信息,同时用图卷积实现时空依赖性的同步提取;多信息结合模块将主次信息用CONCAT(·)函数相加后进行图卷积运算,挖掘主次要信息间的隐藏关系。本发明实现了一个高效的交通流预测方法,能够快速准确的预测交通流信息。
搜索关键词: 一种 基于 深度 学习 神经网络 通流 预测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林理工大学,未经桂林理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310010893.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top