[发明专利]一种基于鸟群优化的深度学习模型隐私保护方法在审

专利信息
申请号: 202310002235.3 申请日: 2023-01-03
公开(公告)号: CN115983316A 公开(公告)日: 2023-04-18
发明(设计)人: 张攀峰;吴丹华;赵聪;杜慧 申请(专利权)人: 桂林理工大学
主分类号: G06N3/006 分类号: G06N3/006;G06N3/08;G06N3/082;G06N3/084;G06F18/214;G06F21/62
代理公司: 桂林文必达专利代理事务所(特殊普通合伙) 45134 代理人: 白洪
地址: 541004 广西壮*** 国省代码: 广西;45
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及隐私保护技术领域,具体涉及一种基于鸟群优化的深度学习模型隐私保护方法,包括首先进行数据集蒸馏,将精炼后的数据集作为模型训练的输入数据集;将鸟群参数初始化,用鸟的位置表示各神经元的权重参数;在每一次的迭代中,利用鸟的位置参数计算当前梯度,对所得梯度进行剪裁;对每个样本梯度添加噪声,梯度下降,参数更新;根据适应度,更新个体历史最优位置和当下种群最优鸟的位置,重新进行新一轮的迭代训练;达到停止条件时,迭代结束,得到一个满足差分隐私的网络和扰动后的最优参数。经验证,本发明在收敛速度、最终收敛程度和测试效果上均优于基准方法,在保护用户隐私的同时,更好地保留了模型的准确性。
搜索关键词: 一种 基于 鸟群 优化 深度 学习 模型 隐私 保护 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于桂林理工大学,未经桂林理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202310002235.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top