[发明专利]一种基于Transformer结构的局部和全局视角兼容的目标跟踪方法在审
| 申请号: | 202211543971.1 | 申请日: | 2022-12-01 |
| 公开(公告)号: | CN116309690A | 公开(公告)日: | 2023-06-23 |
| 发明(设计)人: | 王栋;刘畅;卢湖川 | 申请(专利权)人: | 大连理工大学;大连理工大学宁波研究院;大连维视科技有限公司 |
| 主分类号: | G06T7/223 | 分类号: | G06T7/223;G06T7/215;G06V10/26;G06V10/766;G06V10/80;G06N5/04 |
| 代理公司: | 辽宁鸿文知识产权代理有限公司 21102 | 代理人: | 王海波 |
| 地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 一种基于Transformer结构的局部和全局视角兼容的目标跟踪方法。本发明的Transformer结构采用ViT‑Base的网络结构,将依据前一帧跟踪位置裁剪的局部搜索区域和全图搜索区域同时作为输入,两路搜索分支共享特征提取和特征融合网络的权重,实现在统一模型下的局部和全局视角目标跟踪。同时使用一个基于Transformer的特征编码网络获得跟踪框的特征向量,在局部跟踪结果的回归质量预测得分较低时,从全局和局部跟踪的多个结果中选择与第一帧给定目标的特征向量距离最小的跟踪框作为当前帧的最终跟踪结果;在局部跟踪结果的回归质量预测得分较高时,采用局部跟踪结果作为当前帧的最终跟踪结果。 | ||
| 搜索关键词: | 一种 基于 transformer 结构 局部 全局 视角 兼容 目标 跟踪 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学;大连理工大学宁波研究院;大连维视科技有限公司,未经大连理工大学;大连理工大学宁波研究院;大连维视科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202211543971.1/,转载请声明来源钻瓜专利网。
- 基于Transformer+LSTM神经网络模型的商品销量预测方法及装置
- 一种基于Transformer模型自然场景文字识别方法
- 一种深度Transformer级联神经网络模型压缩算法
- 点云分割方法、系统、介质、计算机设备、终端及应用
- 基于Transformer的中文智能对话方法
- 一种基于改进Transformer模型的飞行器故障诊断方法和系统
- 一种基于Transformer模型的机器翻译模型优化方法
- 基于Transformer和增强交互型MPNN神经网络的小分子表示学习方法
- 基于U-Transformer多层次特征重构的异常检测方法及系统
- 基于EfficientDet和Transformer的航空图像中的飞机检测方法





