[发明专利]一种基于图神经网络联邦学习的工业设备故障检测方法在审

专利信息
申请号: 202210803801.6 申请日: 2022-07-07
公开(公告)号: CN115311205A 公开(公告)日: 2022-11-08
发明(设计)人: 罗光圣;方志军;赵晓丽;杨驰 申请(专利权)人: 上海工程技术大学
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04;G06N3/08;G06N20/20;G06F16/35;G06F16/25;G06F16/27
代理公司: 上海唯智赢专利代理事务所(普通合伙) 31293 代理人: 刘朵朵
地址: 201620 *** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于图神经网络联邦学习的工业设备故障检测方法,属于工业设备故障检测领域。该方法包括:客户端采集工业设备故障数据,构建带有标签的工业设备图数据集;建立并初始化客户端图神经网络模型;根据工业设备图数据集和公共数据集训练图神经网络模型;并将训练好的模型参数上传中央服务器,中央服务器将得到的所有客户端模型参数进行聚合,得到更新的模型参数,并下发给所有客户端;客户端更新本地模型,迭代训练直至网络模型的损失值小于阈值或达到指定训练次数。本发明依据图结构数据,基于图神经网络在联邦学习架构下进行训练,并在联邦学习架构下进行GNN聚合。使得在本地数据的私密性得以保证的前提下,本地模型间互相受益。
搜索关键词: 一种 基于 神经网络 联邦 学习 工业 设备 故障 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海工程技术大学,未经上海工程技术大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210803801.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top