[发明专利]一种基于影像组学与深度学习特征融合的椎体骨密度分类方法有效
| 申请号: | 202210378696.6 | 申请日: | 2022-04-12 |
| 公开(公告)号: | CN114863165B | 公开(公告)日: | 2023-06-16 |
| 发明(设计)人: | 张堃;林鹏程;徐沛霞;王林;潘晶;刘志诚;韩宇;涂鑫涛;刘纪元 | 申请(专利权)人: | 南通大学 |
| 主分类号: | G06V10/764 | 分类号: | G06V10/764;G06V10/774;G06V10/80;G06V10/82;G06V10/74;G06V10/40;G06T7/11;G06T7/00;G06T5/00;G06N3/0464 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 226019 *** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明涉及医学图像分割与图像分类技术领域,具体涉及一种基于影像组学与深度学习特征融合的椎体骨密度分类方法,将CT图像下椎体分为骨质疏松、低骨量与正常组,包括S1:建立基于CRF和注意力引导的椎体分割网络,获取L1、L2椎体松质骨掩膜;S2:通过GCAM‑Net对L1和L2融合后的特征图进行深度学习特征提取,并利用L1和L2的CT图像及掩膜进行影像组学特征提取;S3:运用差分进化算法在深度学习特征中提取最优特征集,并将提取后影像组学特征通过SVM‑RFE法进行特征筛选,最后将影像组学特征和深度学习特征通过最大相关性融合算法进行特征融合,并利用神经网络分类。本发明技术方案结合深度学习特征和影像组学特征,有效提高骨密度分类的准确性。 | ||
| 搜索关键词: | 一种 基于 影像 深度 学习 特征 融合 椎体骨 密度 分类 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南通大学,未经南通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202210378696.6/,转载请声明来源钻瓜专利网。
- 上一篇:一种电路柜的检测方法及设备
- 下一篇:激光触控笔及交互系统





