[发明专利]一种基于影像组学与深度学习特征融合的椎体骨密度分类方法有效

专利信息
申请号: 202210378696.6 申请日: 2022-04-12
公开(公告)号: CN114863165B 公开(公告)日: 2023-06-16
发明(设计)人: 张堃;林鹏程;徐沛霞;王林;潘晶;刘志诚;韩宇;涂鑫涛;刘纪元 申请(专利权)人: 南通大学
主分类号: G06V10/764 分类号: G06V10/764;G06V10/774;G06V10/80;G06V10/82;G06V10/74;G06V10/40;G06T7/11;G06T7/00;G06T5/00;G06N3/0464
代理公司: 暂无信息 代理人: 暂无信息
地址: 226019 *** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及医学图像分割与图像分类技术领域,具体涉及一种基于影像组学与深度学习特征融合的椎体骨密度分类方法,将CT图像下椎体分为骨质疏松、低骨量与正常组,包括S1:建立基于CRF和注意力引导的椎体分割网络,获取L1、L2椎体松质骨掩膜;S2:通过GCAM‑Net对L1和L2融合后的特征图进行深度学习特征提取,并利用L1和L2的CT图像及掩膜进行影像组学特征提取;S3:运用差分进化算法在深度学习特征中提取最优特征集,并将提取后影像组学特征通过SVM‑RFE法进行特征筛选,最后将影像组学特征和深度学习特征通过最大相关性融合算法进行特征融合,并利用神经网络分类。本发明技术方案结合深度学习特征和影像组学特征,有效提高骨密度分类的准确性。
搜索关键词: 一种 基于 影像 深度 学习 特征 融合 椎体骨 密度 分类 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南通大学,未经南通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202210378696.6/,转载请声明来源钻瓜专利网。

同类专利
专利分类
×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top