[发明专利]基于深度特征迁移学习的无参考图像质量评价方法有效
申请号: | 202110678186.6 | 申请日: | 2021-06-18 |
公开(公告)号: | CN113421237B | 公开(公告)日: | 2023-04-18 |
发明(设计)人: | 何立火;任伟;李嘉秀;邓夏迪;甘海林;唐杰浩;柯俊杰;张超仑;路文 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T17/00;G06V10/774;G06V10/82;G06F30/27;G06N3/0464;G06N3/096 |
代理公司: | 陕西电子工业专利中心 61205 | 代理人: | 田文英;王品华 |
地址: | 710071*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于深度特征迁移学习的无参考图像质量评价方法,其步骤如下:构建失真特征提取网;构建多分支特征注意力模块;构建质量回归网络;生成无参考图像质量回归网络;生成训练集;训练无参考图像质量回归网络;对待评价图像进行质量评估。本发明失真特征提取网络所包含的多分支特征注意力模块能够自适应地捕获自然图像的失真特征,在质量回归网络的输出侧可以自动获得输入图像的质量分数。多个国际公开数据库上的广泛实验结果表明,本发明方法提高了失真图像质量的预测精度,具有评价无参考图像质量时与人眼视觉感知一致性更高、泛化性能更强的优点。 | ||
搜索关键词: | 基于 深度 特征 迁移 学习 参考 图像 质量 评价 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110678186.6/,转载请声明来源钻瓜专利网。