[发明专利]一种基于深度学习的SuperDARN雷达对流图短期预报方法有效
申请号: | 202110332168.2 | 申请日: | 2021-03-29 |
公开(公告)号: | CN112946784B | 公开(公告)日: | 2022-09-16 |
发明(设计)人: | 刘二小;邓天云 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G01W1/10 | 分类号: | G01W1/10;G01S7/41 |
代理公司: | 浙江千克知识产权代理有限公司 33246 | 代理人: | 周希良 |
地址: | 310018 浙江省杭州市*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于深度学习的SuperDARN雷达对流图短期预报方法,包括以下步骤:步骤1:获取SuperDARN雷达观测数据和OMNI卫星观测数据并进行预处理;步骤2:将OMNI卫星观测数据和SuperDARN雷达观测数据匹配并对齐构成完备数据集;步骤3:使用皮尔逊相关系数法进行特征选择并对其标准化;步骤4:输入到Python中Tensorflow模块搭建好的深度学习模型中进行训练,参数调试,得到预报模型;步骤5:将预报模型应用到测试数据中。本发明基于深度学习和大数据相关理论技术的发展,采用神经网络相关方法,利用SuperDARN雷达获得的海量具有丰富信息的数据,将数据之间的关系用具有强大拟合能力的神经网络表达出来,实现高纬电离层对流图像的短期预报,满足空间天气预报的需求。 | ||
搜索关键词: | 一种 基于 深度 学习 superdarn 雷达 对流 短期 预报 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202110332168.2/,转载请声明来源钻瓜专利网。