[发明专利]基于深度强化学习模型的行星齿轮箱故障诊断方法有效

专利信息
申请号: 202011644046.9 申请日: 2020-12-31
公开(公告)号: CN112633245B 公开(公告)日: 2023-01-06
发明(设计)人: 严如强;王辉;陈雪峰;孙闯;王诗彬;张兴武 申请(专利权)人: 西安交通大学
主分类号: G06F18/10 分类号: G06F18/10;G06F18/241;G06F18/214;G06F18/21;G06V10/82;G01M13/021;G01M13/028;G06N3/045;G06N3/0464;G06N3/084;G06N3/092;G06F123/02
代理公司: 北京中济纬天专利代理有限公司 11429 代理人: 覃婧婵
地址: 710049 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 公开了基于深度强化学习模型的行星齿轮箱故障诊断方法,方法包括:信号采集,获得行星齿轮箱在不同的健康状况下的振动信号,基于所述振动信号构建训练样本信号及测试样本信号;时频图像生成,同步提取所述训练样本信号及测试样本信号变换为二维时频图像,基于所述二维时频图像构建训练集及测试集;建立深度强化学习模型,基于训练集,智能体与环境进行不断地交互,训练智能体自主学习最优的诊断策略,所述智能体包括至少两个相同结构的深度卷积神经网络;故障识别,将所述测试集中的样本逐个输入训练完成的所述智能体,根据所述诊断策略识别行星齿轮箱故障类型,及分析诊断结果。
搜索关键词: 基于 深度 强化 学习 模型 行星 齿轮箱 故障诊断 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011644046.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top