[发明专利]基于深度学习的零件喷码字符端到端识别方法在审

专利信息
申请号: 202011163492.8 申请日: 2020-10-27
公开(公告)号: CN112508023A 公开(公告)日: 2021-03-16
发明(设计)人: 唐倩;郭伏雨;李代杨;罗超 申请(专利权)人: 重庆大学
主分类号: G06K9/34 分类号: G06K9/34;G06N3/04;G06N3/08
代理公司: 重庆谢成律师事务所 50224 代理人: 谢殿武
地址: 400044 *** 国省代码: 重庆;50
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于深度学习的零件喷码字符端到端识别方法,所述方法包括以下步骤:S1:采用卷积层提取目标图片的图像特征,所述目标图片为含有待识别字符的图片;S2:采用循环神经网络RNN,以所述图像特征为输入,识别图像特征的感受野信息,获得所述图像特征的特征序列;S3:利用联结主义时间分类CTC训练后的循环神经网络对所述特征序列进行学习,获得所述特征序列的预测序列;S4:根据CTC Beam Search Decoding算法,以所述预测序列为输入,获得字符序列。本申请提供的识别方法采用了卷积神经网络(CNN)、循环神经网络(RNN)和联结主义时间分类(CTC)的网络结构,实现一行喷码字符的端到端识别;本申请的识别方法不依赖于字符分割,通用性强;字符识别效率更高。
搜索关键词: 基于 深度 学习 零件 码字 符端到端 识别 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202011163492.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top