[发明专利]基于特征迁移的低比特神经网络训练方法及系统有效
申请号: | 202010780010.7 | 申请日: | 2020-08-05 |
公开(公告)号: | CN111967580B | 公开(公告)日: | 2023-09-29 |
发明(设计)人: | 张娅;杜昆原;王延峰 | 申请(专利权)人: | 上海交通大学 |
主分类号: | G06N3/0464 | 分类号: | G06N3/0464;G06N3/084;G06V10/764;G06V10/82 |
代理公司: | 上海段和段律师事务所 31334 | 代理人: | 李佳俊;郭国中 |
地址: | 200240 *** | 国省代码: | 上海;31 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于迁移学习的低比特神经网络训练方法及系统,包括:低比特特征提取步骤:对训练数据集的图像,使用低比特深度卷积神经网络提取图像的低比特特征图;全精度特征提取步骤:对训练数据集的图像,使用全精度深度卷积神经网络提取图像的全精度特征图;特征对齐步骤:根据低比特特征图和全精度特征图,通过特征迁移,在特征对齐的约束下,协同训练全精度深度卷积神经网络和低比特深度卷积神经网络,使得低比特特征图和全精度特征图对齐;低比特预测步骤:根据训练后的低比特深度卷积神经网络实现图像类型的预测;本发明通过直接对连续空间的全精度特征图进行特征迁移,避免了因量化造成的特征细节损失。 | ||
搜索关键词: | 基于 特征 迁移 比特 神经网络 训练 方法 系统 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于上海交通大学,未经上海交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010780010.7/,转载请声明来源钻瓜专利网。