[发明专利]一种考虑不良天气的深度学习交通流预测方法有效
| 申请号: | 202010669271.1 | 申请日: | 2020-07-13 |
| 公开(公告)号: | CN111882869B | 公开(公告)日: | 2022-10-04 |
| 发明(设计)人: | 姚荣涵;张文松 | 申请(专利权)人: | 大连理工大学 |
| 主分类号: | G08G1/01 | 分类号: | G08G1/01;G06N3/04;G06N3/08;G06Q10/04 |
| 代理公司: | 大连理工大学专利中心 21200 | 代理人: | 温福雪;侯明远 |
| 地址: | 116024 辽*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明属于智能交通控制技术领域,提供一种考虑不良天气的深度学习交通流预测方法,首先,选定研究的空间范围、预测的时间范围和预测时间间隔,通过交通流检测器获取预测时间之前的原始交通流数据集,通过气象站获取预测时间之前的原始天气数据集,根据预测时间间隔,将原始天气数据进行集计;其次,基于交通流时间序列和天气数据时间序列构建模型输入矩阵;然后,使用长短期记忆神经网络构建模型第一部分,对所有时期内的历史数据的规律进行挖掘,通过组合卷积神经网络和长短期记忆神经网络构建模型第二部分,对某一时期内的历史数据的规律进行挖掘;最后,将模型第一部分和第二部分进行权重组合后构建CNNLSTM模型,得到交通流数据预测值。 | ||
| 搜索关键词: | 一种 考虑 不良 天气 深度 学习 通流 预测 方法 | ||
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于大连理工大学,未经大连理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/202010669271.1/,转载请声明来源钻瓜专利网。





