[发明专利]基于生成对抗卷积神经网络的光场显著性目标检测方法有效

专利信息
申请号: 202010136253.7 申请日: 2020-03-02
公开(公告)号: CN111369522B 公开(公告)日: 2022-03-15
发明(设计)人: 张骏;蔡洪艳;郑阳;李坤袁;张旭东;孙锐;高隽 申请(专利权)人: 合肥工业大学
主分类号: G06T7/00 分类号: G06T7/00;G06N3/04;G06N3/08
代理公司: 安徽省合肥新安专利代理有限责任公司 34101 代理人: 陆丽莉;何梅生
地址: 230009 安*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于生成对抗卷积神经网络的光场显著性目标检测方法,其步骤包括:1将光场数据转换成重聚焦序列;2对重聚焦序列进行数据增强;3以U‑Net网络和GAN网络结构为基础,构建生成对抗卷积神经网络,以重聚焦序列为网络输入,并利用光场数据集训练;4利用训练好的生成对抗卷积神经网络对待处理的光场数据进行显著性目标检测。本发明方法能充分利用深度学习方法和光场重聚焦信息,从而能有效提高复杂场景图像的显著目标检测的准确性。
搜索关键词: 基于 生成 对抗 卷积 神经网络 显著 目标 检测 方法
【主权项】:
暂无信息
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于合肥工业大学,未经合肥工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/202010136253.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top