[发明专利]基于双流卷积神经网络的虚拟学习环境微表情识别与交互方法有效
申请号: | 201910481703.3 | 申请日: | 2019-06-04 |
公开(公告)号: | CN110175596B | 公开(公告)日: | 2022-04-22 |
发明(设计)人: | 蔡林沁;董伟;周思桐;王俪瑾 | 申请(专利权)人: | 重庆邮电大学 |
主分类号: | G06V40/20 | 分类号: | G06V40/20;G06V40/16;G06V10/44;G06V10/764;G06V10/80;G06V10/82;G06K9/62 |
代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
地址: | 400065 *** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于双流卷积神经网络的虚拟学习环境微表情识别与交互方法,包括以下步骤:S1:微表情数据的预处理:对微表情视频进行欧拉视频放大并抽取图像序列,对图像序列进行人脸定位并裁剪,得到微表情的RGB数据;将欧拉视频放大后的数据提取光流信息,得到微表情的光流图像;S2:将预处理后的数据分为训练集和测试集两部分并使用迁移学习的方法构建双流卷积神经网络,以学习到微表情的空间与时域信息;S3:将双流卷积神经网络的输出进行最大值融合,以增强识别准确率,得到最终的微表情识别模型;S4:使用微表情识别模型创建虚拟学习环境交互系统,并通过Kinect获取用户面部图像序列进行微表情识别任务。 | ||
搜索关键词: | 基于 双流 卷积 神经网络 虚拟 学习 环境 表情 识别 交互 方法 | ||
【主权项】:
1.一种基于双流卷积神经网络的虚拟学习环境微表情识别与交互方法,其特征在于:包括以下步骤:S1:微表情数据的预处理:对微表情视频进行欧拉视频放大并抽取图像序列,对图像序列进行人脸定位并裁剪,得到微表情的RGB数据;将欧拉视频放大后的数据提取光流信息,得到微表情的光流图像;S2:将预处理后的数据分为训练集和测试集两部分并使用迁移学习的方法构建双流卷积神经网络,以学习到微表情的空间与时域信息;S3:将双流卷积神经网络的输出进行最大值融合,以增强识别准确率,得到最终的微表情识别模型;S4:使用微表情识别模型创建虚拟学习环境交互系统,并通过Kinect获取用户面部图像序列进行微表情识别任务。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆邮电大学,未经重庆邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910481703.3/,转载请声明来源钻瓜专利网。