[发明专利]用于目标跟踪的模型粒子滤波方法、装置、设备及存储介质有效
申请号: | 201910374408.8 | 申请日: | 2019-05-07 |
公开(公告)号: | CN110111367B | 公开(公告)日: | 2021-07-16 |
发明(设计)人: | 李良群;王小梨;谢维信 | 申请(专利权)人: | 深圳大学 |
主分类号: | G06T7/246 | 分类号: | G06T7/246;G06T7/277 |
代理公司: | 深圳市恒申知识产权事务所(普通合伙) 44312 | 代理人: | 袁文英 |
地址: | 518060 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种用于目标跟踪的模型粒子滤波方法、装置、设备及存储介质,方法包括:构建跟踪目标对应的T‑S模糊模型;利用预置的强跟踪粒子滤波算法对所述T‑S模糊模型的后件参数进行辨识,得到状态更新值与状态协方差估计值;利用预置的模糊C回归聚类算法对所述T‑S模糊模型的前件参数隶属度函数进行辨识,得到前件参数隶属值;利用所述状态更新值、所述状态协方差估计值以及所述前件参数隶属值,对所述T‑S模糊模型进行更新。相较于现有技术,本发明跟踪性能更优,在被跟踪目标突然发生方向改变或目标的动态先验信息不精确等复杂情况时,仍能够有效地对目标进行精确跟踪。 | ||
搜索关键词: | 用于 目标 跟踪 模型 粒子 滤波 方法 装置 设备 存储 介质 | ||
【主权项】:
1.一种模糊模型粒子滤波方法,其特征在于,所述方法包括:构建跟踪目标对应的T‑S模糊模型;利用预置的强跟踪粒子滤波算法对所述T‑S模糊模型的后件参数进行辨识,得到状态更新值与状态协方差估计值;利用预置的模糊C回归聚类算法对所述T‑S模糊模型的前件参数隶属度函数进行辨识,得到前件参数隶属值;利用所述状态更新值、所述状态协方差估计值以及所述前件参数隶属值,对所述T‑S模糊模型进行更新。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳大学,未经深圳大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910374408.8/,转载请声明来源钻瓜专利网。