[发明专利]一种基于深度学习网络的雷达辐射源信号识别方法有效
申请号: | 201910239382.6 | 申请日: | 2019-03-27 |
公开(公告)号: | CN110109059B | 公开(公告)日: | 2023-04-07 |
发明(设计)人: | 刘明骞;廖桂悦;宫丰奎 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G01S7/02 | 分类号: | G01S7/02;G01S7/38;G06N3/0464;G06N3/047;G06N3/048;G06F18/213;G06F18/24;G06F18/10;G06N3/088 |
代理公司: | 西安长和专利代理有限公司 61227 | 代理人: | 黄伟洪 |
地址: | 710071 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于电子对抗中雷达辐射源信号的识别技术领域,公开了一种基于深度学习网络的雷达辐射源信号识别方法;首先对接收的雷达辐射源信号进行降频预处理,然后分别计算接收信号的基于线性正则变换的互模糊函数和基于线性正则域的互模糊函数,并分别提取互模糊函数的截面最大值作为特征样本集,最后通过基于稀疏滤波胶囊网络进行分类识别。本发明通过对信号基于线性正则变换的互模糊函数提取特征,克服了复杂电磁波环境中,特征参数在数据范围上的不确定性,提高了识别可信度;可以自动地学习得到层次化特征表示,无需人工提取特征,有效降低了时间成本,能够更好地实现对雷达信号识别的实时性,提高了雷达信号识别以及分类效率和准确度。 | ||
搜索关键词: | 一种 基于 深度 学习 网络 雷达 辐射源 信号 识别 方法 | ||
【主权项】:
1.一种基于深度学习网络的雷达辐射源信号识别方法,其特征在于,所述基于深度学习网络的雷达辐射源信号识别方法包括:第一步,接收机接收雷达脉冲信号,对信号进行降频预处理;第二步,计算基于线性正则变换的互模糊函数和基于线性正则域的互模糊函数,再提取各自互模糊函数图的M个等间隔截面的最大值作为特征向量,共同组成特征样本集;第三步,将得到的特征向量输入稀疏滤波胶囊网络进行分类识别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201910239382.6/,转载请声明来源钻瓜专利网。