[发明专利]基于分层卷积特征的长时间目标跟踪方法及系统有效

专利信息
申请号: 201811318709.0 申请日: 2018-11-07
公开(公告)号: CN109087337B 公开(公告)日: 2020-07-14
发明(设计)人: 刘允刚;生晓晓;梁会军;李峰忠 申请(专利权)人: 山东大学
主分类号: G06T7/246 分类号: G06T7/246;G06N3/04
代理公司: 济南圣达知识产权代理有限公司 37221 代理人: 李圣梅
地址: 250061 山东*** 国省代码: 山东;37
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了基于分层卷积特征的长时间目标跟踪方法及系统,采用预训练好的深度卷积神经网络,对每一帧视频数据提取各层的卷积特征;按照基于相关滤波器模型求取卷积层的响应,并进行加权计算,将最终响应的最大值作为当前帧的目标中心;在逐帧更新的过程中设定阈值,只有当跟踪响应值大于阈值时进行更新相关滤波器模型,否则采用上一帧的相关滤波器模型,同时,跟踪响应值低于设定的阈值时,采用随机蕨算法进行目标的重检测。本公开采用深度学习进行特征提取,提高了目标跟踪的精度;改变的模型更新方式降低了整个跟踪过程中的计算冗余,提高了跟踪速度;在目标遮挡等恶劣情况下使用随机蕨算法进行目标重检测,保证了实际跟踪结果的可靠性。
搜索关键词: 基于 分层 卷积 特征 长时间 目标 跟踪 方法 系统
【主权项】:
1.基于分层卷积特征的长时间目标跟踪方法,其特征是,包括:采用预训练好的深度卷积神经网络,对每一帧视频数据提取各层的卷积特征;按照基于相关滤波器模型求取卷积层的响应,并进行加权计算,将最终响应的最大值作为当前帧的目标中心;在逐帧更新的过程中设定阈值,只有当跟踪响应值大于阈值时进行更新相关滤波器模型,否则采用上一帧的相关滤波器模型,同时,跟踪响应值低于设定的阈值时,采用随机蕨算法进行目标的重检测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811318709.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top