[发明专利]面向Winograd卷积的神经网络处理器有效

专利信息
申请号: 201811122017.9 申请日: 2018-09-26
公开(公告)号: CN109325591B 公开(公告)日: 2020-12-29
发明(设计)人: 韩银和;闵丰;许浩博;王颖 申请(专利权)人: 中国科学院计算技术研究所
主分类号: G06N3/063 分类号: G06N3/063;G06F9/30
代理公司: 北京泛华伟业知识产权代理有限公司 11280 代理人: 王勇;李科
地址: 100190 北*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种面向Winograd卷积的神经网络处理器。该处理器包括:神经元转换模块,用于执行神经元矩阵的转换操作V=[BTdB];权值转换模块,用于执行权值矩阵的转换操作U=[GgGT];点乘模块,用于执行矩阵U和V的点乘操作,获得点乘结果矩阵M=U⊙V;后矩阵转换模块,用于执行针对点乘结果矩阵的转换操作F=ATMA;其中,d表示神经元矩阵,g表示权值矩阵,G、B、A分别表示与权值矩阵g、神经元矩阵d和点乘结果矩阵M对应的转换矩阵。本发明的神经网络处理器能够提供计算效率并降低运行功耗。
搜索关键词: 面向 winograd 卷积 神经网络 处理器
【主权项】:
1.一种面向Winograd卷积的神经网络处理器,包括:神经元转换模块:用于执行神经元矩阵的转换操作V=[BTdB];权值转换模块:用于执行权值矩阵的转换操作U=[GgGT];点乘模块:用于执行矩阵U和V的点乘操作,获得点乘结果矩阵M=U⊙V;后矩阵转换模块:用于执行针对点乘结果矩阵的转换操作F=ATMA;其中,d表示神经元矩阵,g表示权值矩阵,G、B、A分别表示与权值矩阵g、神经元矩阵d和点乘结果矩阵M对应的转换矩阵。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院计算技术研究所,未经中国科学院计算技术研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811122017.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top