[发明专利]一种人工智能框架进行CNN迭代训练方法在审

专利信息
申请号: 201811088509.0 申请日: 2018-09-18
公开(公告)号: CN109325533A 公开(公告)日: 2019-02-12
发明(设计)人: 刘宏基 申请(专利权)人: 成都网阔信息技术股份有限公司
主分类号: G06K9/62 分类号: G06K9/62;G06N3/04;G06N3/08
代理公司: 成都弘毅天承知识产权代理有限公司 51230 代理人: 刘东
地址: 610041 四川省成都*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种人工智能框架进行CNN迭代训练方法,为了实现智能训练,也可称为挂机训练。本CNN训练框架采用了动态学习率的算法和自动判收敛算法。随着训练轮次的展开,学习率会根据反向梯度算法中的梯度变化而动态调整,逐步减小至预设的值。梯度变化在一定时间内变化小于阈值,那么系统将自行停止训练,标志训练完成。训练完成后,用测试程序把得到的网络文件对未知样本集进行分类识别,再稍加辅以人工矫正,便能很方便的扩充训练数据集,进行迭代训练。最终实现的网络分类准确率能达到99.8%。
搜索关键词: 迭代训练 人工智能 梯度变化 算法 训练数据集 测试程序 动态调整 动态学习 分类识别 梯度算法 网络分类 网络文件 智能训练 逐步减小 样本集 准确率 挂机 预设 矫正 收敛 学习
【主权项】:
1.一种人工智能框架进行CNN迭代训练方法,包括样本集,其特征在于:包括以下步骤:S1、构建CNN网络结构,所述CNN网络结构为训练网络,此训练网络包括三个卷积层、两个池化层和一个输出层;其中:第一层是卷积层,采用Relu激活函数,卷积方式为带边卷积;第二层是池化层,按照最大值池化;第三层是卷积层,采用Relu激活函数,卷积方式为带边卷积;第四层是卷积层,采用Relu激活函数,卷积方式为带边卷积;第五层是池化层,采用Relu激活函数;第六层是输出层,采用Softmax激活函数;S2、将样本集送入步骤S1建立的训练网络中进行识别训练,训练完成后得到CNN网络;S3、用测试程序把得到的CNN网络对未知样本集进行分类识别,再辅以人工矫正,进行迭代训练,得到新的的CNN网络;S4、重复步骤S3,根据反向梯度算法中的梯度变化动态调整学习率,学习率逐步减小至预设的值,直到梯度变化在一定时间内变化小于阈值,那么系统将自行停止训练,得到最终的CNN网络。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都网阔信息技术股份有限公司,未经成都网阔信息技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201811088509.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top