[发明专利]一种基于深度学习的异物过滤视频编码芯片和方法有效
申请号: | 201810887466.6 | 申请日: | 2018-08-06 |
公开(公告)号: | CN109308449B | 公开(公告)日: | 2021-06-18 |
发明(设计)人: | 廖裕民;强书连 | 申请(专利权)人: | 瑞芯微电子股份有限公司 |
主分类号: | G06K9/00 | 分类号: | G06K9/00;G06N3/04;H04N19/85;H04N19/42 |
代理公司: | 福州市景弘专利代理事务所(普通合伙) 35219 | 代理人: | 林祥翔;徐剑兵 |
地址: | 350003 福建省*** | 国省代码: | 福建;35 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明提供了一种基于深度学习的异物过滤视频编码芯片和方法,所述方法通过神经网络分类识别单元对视频流图像中包含的物体一一进行分类,并在当前帧图像中识别出敏感物体的情况下,采用该敏感物体对应的处理方式对敏感物体进行处理,从而实现自动将当前帧图像中用户不期望看到的物体去除的目的。同时,当某一帧图像识别出敏感物体时,则会对接下来几帧图像都进行物体识别,反之,当某一帧图像未识别出敏感物体时,则对接下来几帧图像直接进行编码输出而不进行物体识别,相较于对每一帧图像都进行识别判断的方式,有效提升了处理效率。 | ||
搜索关键词: | 一种 基于 深度 学习 异物 过滤 视频 编码 芯片 方法 | ||
【主权项】:
1.一种基于深度学习的异物过滤视频编码芯片,其特征在于,所述芯片包括数据通路选择单元、神经网络分类识别单元、敏感物体判断单元、敏感区域划分单元、敏感物体存储列表、敏感区域处理单元、敏感区域缓存单元、图像合并单元、视频编码单元;所述数据通路选择单元分别与图像采集单元、敏感物体判断单元、神经网络分类识别单元连接;所述神经网络分类识别单元与敏感区域划分单元、敏感物体判断单元连接;所述敏感物体判断单元与敏感物体存储列表连接;所述敏感区域划分单元与敏感区域缓存单元连接,所述敏感区域缓存单元与图像合并单元连接,所述图像合并单元与视频编码单元连接;所述数据通路选择单元用于接收图像采集单元采集的视频流数据,并将当前帧图像发送至神经网络分类识别单元;所述神经网络分类识别单元用于对当前帧图像进行物体识别,并将物体识别结果发送至敏感物体判断单元;所述敏感物体判断单元用于根据当前帧图像的物体识别结果,判断当前帧图像中是否包含有敏感物体存储列表中预先存储的敏感物体,若是则发送第一控制信号至数据通路选择单元,否则发送第二控制信号至数据通路选择单元;所述数据通路选择单元用于接收第一控制信号,将当前帧图像之后的连续N帧图像传输至神经网络分类识别单元;或者,用于接收第二控制信号,将当前帧图像之后的连续M帧图像传输至视频编码单元进行编码处理;N、M为正整数;所述敏感区域划分单元用于在当前帧图像中存在敏感物体的情况下,接收神经网络分类识别单元传输的当前帧图像,并划分出当前帧图像对应的敏感区域图像,并将敏感区域图像存储于敏感区域缓存单元中;所述敏感区域图像包含有敏感物体;所述敏感区域处理单元用于获取敏感区域缓存单元中的敏感区域图像,根据敏感物体与处理方式的对应关系,采用相应地处理方式处理敏感区域图像,并将处理结果发送至图像合并单元;所述图像合并单元用于接收当前帧图像和处理后的敏感区域图像,根据敏感区域图像在当前帧图像上的坐标位置,将处理后的敏感区域图像和当前帧图像合成为处理帧图像,并将所述处理帧图像传输至视频编码单元进行编码。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于瑞芯微电子股份有限公司,未经瑞芯微电子股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810887466.6/,转载请声明来源钻瓜专利网。