[发明专利]基于深度学习的人际交互肢体语言自动生成方法及系统有效
申请号: | 201810623961.6 | 申请日: | 2018-06-15 |
公开(公告)号: | CN108921284B | 公开(公告)日: | 2020-11-17 |
发明(设计)人: | 甘甜;马志鑫;宋雪萌;聂礼强 | 申请(专利权)人: | 山东大学 |
主分类号: | G06N3/04 | 分类号: | G06N3/04;G10L25/63;G10L15/26 |
代理公司: | 济南圣达知识产权代理有限公司 37221 | 代理人: | 黄海丽 |
地址: | 250101 *** | 国省代码: | 山东;37 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了基于深度学习的人际交互肢体语言自动生成方法及系统,包括:步骤(1):从演讲视频中提取每一帧图像所对应时间范围内人物的音频训练特征;同时,从演讲视频中提取每一帧图像内人物的肢体训练特征,建立音频训练特征与肢体训练特征之间的的一一对应关系;步骤(2):构建双层循环神经网络模型;将音频训练特征作为双层循环神经网络模型的输入值,将肢体训练特征作为双层循环神经网络模型的输出值,对已构建的双层循环神经网络模型进行训练,得到训练好的双层循环神经网络模型;步骤(3):从待推荐肢体动作的音频中提取音频测试特征;步骤(4):将音频测试特征输入到训练好的双层循环神经网络模型中,输出推荐的肢体测试特征。 | ||
搜索关键词: | 基于 深度 学习 人际 交互 肢体 语言 自动 生成 方法 系统 | ||
【主权项】:
1.基于深度学习的人际交互肢体语言自动生成方法,其特征是,包括:步骤(1):从演讲视频中提取每一帧图像所对应时间范围内人物的音频训练特征;同时,从演讲视频中提取每一帧图像内人物的肢体训练特征,建立音频训练特征与肢体训练特征之间的的一一对应关系;步骤(2):构建双层循环神经网络模型;将音频训练特征作为双层循环神经网络模型的输入值,将肢体训练特征作为双层循环神经网络模型的输出值,对已构建的双层循环神经网络模型进行训练,得到训练好的双层循环神经网络模型;步骤(3):从待推荐肢体动作的音频中提取音频测试特征;步骤(4):将音频测试特征输入到训练好的双层循环神经网络模型中,输出推荐的肢体测试特征。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于山东大学,未经山东大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201810623961.6/,转载请声明来源钻瓜专利网。