[发明专利]一种基于深度学习的短文本情感要素抽取方法及装置有效

专利信息
申请号: 201610758067.0 申请日: 2016-08-29
公开(公告)号: CN106372058B 公开(公告)日: 2019-10-15
发明(设计)人: 程国艮;巢文涵;周庆 申请(专利权)人: 中译语通科技股份有限公司
主分类号: G06F17/27 分类号: G06F17/27;G06F16/35
代理公司: 北京万贝专利代理事务所(特殊普通合伙) 11520 代理人: 马红
地址: 100040 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的短文本情感要素抽取方法及装置,涉及机器翻译技术领域;解决了现有计算机系统对于自然语言的理解仍处于相对较低的阶段,情感评价对象识别结果不佳的技术问题;该技术方案包括:采用双向长短时记忆的循环神经网络对句子进行建模,然后为每个类别构建分类器,进行分类;对于输入句子而言,将句子中的每个词表示为词向量,作为输入序列输入到所述循环神经网络中;依次计算所述循环神经网络中的每个隐藏状态,计算句子的特征表示;得到句子的特征表示之后,采用逻辑分类器对句子进行分类,识别句子中所评论的情感要素的类别。
搜索关键词: 一种 基于 深度 学习 文本 情感 要素 抽取 方法 装置
【主权项】:
1.一种基于深度学习的短文本情感要素抽取方法,其特征在于,采用双向长短时记忆的循环神经网络对句子进行建模,然后为每个类别构建分类器,进行分类;对于输入句子而言,将句子中的每个词表示为词向量,作为输入序列输入到所述循环神经网络中;依次计算所述循环神经网络中的每个隐藏状态,计算句子的特征表示;得到句子的特征表示之后,采用逻辑分类器对句子进行分类,识别句子中所评论的情感要素的类别;所述依次计算所述循环神经网络中的每个隐藏状态,具体为第t时刻的隐藏层节点计算方式如下,,其中,htf是前向循环神经网络的隐藏节点值,htb是后向循环神经网络的隐藏节点值,选用最后时刻的隐藏节点值作为句子的向量表示,即,其中f是需要的句子向量表示,冒号表示向量拼接。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中译语通科技股份有限公司,未经中译语通科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610758067.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top